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TU e motivation

binary space partitions (BSPs): recursive subdivision
of space until in each region there is only one object
(or: constant number of objects)

bsp of factory

Theory: worst-case size Θ(n2)
(Paterson-Yao ’90)

12,748,510 triangles

Practice: BSPs are used



TU e geometry-sensitive analysis

• analysis not only as function of input size n,
but also as function of certain geometry-describing parameters

• leads (hopefully) to

– better prediction of when algorithms are efficient in practice

– simpler algorithms, designed with practical inputs in mind



TU e Shape parameter for individual objects:fatness

δ-fat triangle:
minimum angle at least δ

fat triangles



TU e Shape parameter for individual objects:fatness

δ-fat triangle:
minimum angle at least δ

fat triangles

There are concentric balls
Bin ⊂ o ⊂ Bout such that

diam(Bin)
diam(Bout)

≥ β
vol(o)

diam2
(o)
≥ β

β-fat convex objects

definition 1 definition 2

Bin

Bout
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TU e Definitions: fat objects (2)

Non-convex objects

fat not fat ?
fat objects should not have skinny parts

=⇒

these objects are not fat



TU e Definitions: fat objects (3)

For any ball B with center in o and not
containing o in its interior, we have:

vol(B u o) ≥ γ · vol(B)

component of B ∩ o containing center

object o

(locally) γ-fat object
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TU e Definitions: fat objects (3)

For any ball B with center in o and not
containing o in its interior, we have:

vol(B u o) ≥ γ · vol(B)

component of B ∩ o containing center

object o

(locally) γ-fat object

not locally fat

fatness of o: largest γ
such that o is γ-fat
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density• distribution parameter for sets of objects:

:= diameter of odiam(o)
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density• distribution parameter for sets of objects:

:= diameter of odiam(o)

density of set S of objects:

minimum λ such that for any ball b :

#{o ∈ S : o intersects b, diam(o) ≥ diam(b) }| ≤ λ

van der Stappen ’94
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density of set S of objects:

minimum λ such that for any ball b :

#{o ∈ S : o intersects b, diam(o) ≥ diam(b) }| ≤ λ

geometry-describing parameters: density (cont’d)

Does it makes sense?

Hope: density will in practice be a (small) constant.

object = facet of polytope

refining the object does not
increase the density significantly
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TU e fatness vs. density: disjoint objects

van der Stappen ’94

A set S of β-fat objects has density O(1/β).disjoint

Proof:

b

we must show that for any ball b:

#{o : o intersects b, diam(o) ≥ diam(b)} = O(1/β)

b2

• each object o that we must count
covers a fraction Ω(β) of the ball b2

• objects are disjoint
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n locally γ-fat objectsS:

The set E has density O(1/γ).

E: “edges” of boundary of union of S

dB ’05
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TU e fatness vs. density: intersecting objects

n locally γ-fat objectsS:

The set E has density O(1/γ).

“edges” of boundary of union of S

dB ’05

intersects O(1/γ)
large “edges”

E:



TU e this talk

• combinatorics

– overview of results

– recent result: union of fat triangles

• algorithms and data structures

– overview of results

– some tools and examples



TU e

Combinatorics
for Fat Objects and Low Density Scenes
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n arbitrary triangles:

union complexity can be Θ(n2)

Fat objects: bounds on the union complexity

[Matoušek et al. ’94, Pach-Tardos ’02]

n fat triangles: complexity is O(n log log n)
Conjecture: Θ(nα(n))
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TU e overview of results: combinatorics (2)

decompositions of (non-convex) polyhedra into tetrahedra

• worst case: Θ(n2)

• dB-Gray ’08: fat polyhedra with fat faces: O(n)

Union complexity: objects in 3D

• fat convex polyhedra: open

• worst case: Θ(n3)

• Pach et al. ’03: arbitrarily oriented equal-sized cubes: O(n2+ε)

• Ezra-Sharir ’07: fat tetrahedra: O(n2+ε)

• Aronov et al. ’04: κ-round objects: O(n2+ε)



TU e Some more results

complexity of Voronoi diagrams on terrains
Moet et al. ’06, Aronov-dB-Thite ’08

• terrain with n triangles, m sites

• worst-case: Ω(n2) even for two sites

• on realistic terrain: O(n+m
√
n)

complexity of visibility maps of terrains
Moet et al. ’06, dB-Haverkort-Tsirogiannis ’09

• worst case: Θ(n2)

• realistic terrain: Θ(n
√
n)

• realistic terrain with noise: Θ(n)

river networks: O(n2) complexity on realistic terrains, instead of O(n3)



TU e

(joint work with Boris Aronov, Esther Ezra, and Micha Sharir)

all angles at least γ

The union complexity of γ-fat triangles

(and of locally γ-fat curved objects)



TU e the union complexity of fat triangles

basic tool: Merging Lemma

Let A and B be two sets of locally γ-fat objects in R2. Then

UC(A ∪B) = O((1/γ) · (UC(A) + UC(B))),

where UC = union complexity
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TU e the union complexity of fat triangles

basic tool: Merging Lemma

Let A and B be two sets of locally γ-fat objects in R2. Then

UC(A ∪B) = O((1/γ) · (UC(A) + UC(B))),

where UC = union complexity

Note: not true for non-fat objects

( alternative for polygonal objects: Combination Lemma )



TU e union complexity of fat triangles (cont’d)

another tool

• cover each triangle by subtriangles with canonical shape

6π/γ canonical directions

γ/3

≥ γ/3

subtriangles have two edges
with canonical directions



TU e union complexity of fat triangles (cont’d)

another tool

• cover each triangle by subtriangles with canonical shape

6π/γ canonical directions

γ/3

≥ γ/3

subtriangles have two edges
with canonical directions

T : orginal set of n triangles T1, T2, . . .: O(1/γ2) sets of subtriangles

within each set all subtriangles are fat
and use the same canonical directions

=⇒

(in fact, O(1/γ) sets suffice in this problem)



TU e union complexity of fat triangles (cont’d)

T1:

T2:

each vertex of union of T is

• a vertex of some union
⋃
Ti

• a vertex of some union
⋃

(Ti∪Tj)



TU e union complexity of fat triangles (cont’d)

T1:

T2:

each vertex of union of T is

• a vertex of some union
⋃
Ti

• a vertex of some union
⋃

(Ti∪Tj)

Merging Lemma∑
i,j UC(Ti ∪ Tj)

=
∑
i,j O(UC(Ti) + UC(Tj))

= ( # subsets ) ·
∑
iO(UC(Ti))

= O(1/γ2) ·O(
∑
i UC(Ti))



TU e union complexity of fat triangles (cont’d)

T1:

T2:

each vertex of union of T is

• a vertex of some union
⋃
Ti

• a vertex of some union
⋃

(Ti∪Tj)

Merging Lemma∑
i,j UC(Ti ∪ Tj)

=
∑
i,j O(UC(Ti) + UC(Tj))

= ( # subsets ) ·
∑
iO(UC(Ti))

= O(1/γ2) ·O(
∑
i UC(Ti))

bound for fat canonical triangles carries over to fat triangles



TU e union complexity of fat triangles (cont’d)

New problem: bound union complexity of n canonical triangles

• each triangle has a horizontal bottom edge

• each triangle has vertical left edge

• angles at top corner and right corner are at least γ
( in fact, can get angles arbitrary close to 45◦ )
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New problem: bound union complexity of n canonical triangles

• each triangle has a horizontal bottom edge

• each triangle has vertical left edge

• angles at top corner and right corner are at least γ
( in fact, can get angles arbitrary close to 45◦ )

a further reduction:

• cover triangles by towers:
fat triangle on top of long
(but still fat) rectangle



TU e union complexity of fat triangles (cont’d)

New problem: bound union complexity of n vertical towers

assume w.l.o.g.:
triangular top:
angles between 44◦ and 46◦

rectangular base:
height = 2 × width



TU e union complexity of fat triangles (cont’d)

New problem: bound union complexity of n vertical towers

assume w.l.o.g.:

diagonal edge of one tower cannot
simultaneously intersect top edge and
bottom edge of base of another tower

crucial property:

cannot happen

triangular top:
angles between 44◦ and 46◦

rectangular base:
height = 2 × width



TU e union complexity of fat triangles (cont’d)

The union complexity of towers

HV-vertex

HD-vertex

VD-vertex

DD-vertex
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The number of HV-, HD, and VD-vertices is O(n).Lemma:
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TU e union complexity of fat triangles (cont’d)

The number of HV-, HD, and VD-vertices is O(n).Lemma:

HV-vertices HD-vertices

Proof:



TU e union complexity of fat triangles (cont’d)

It remains to bound the number of DD-vertices

• upper-envelope complexity
gives Ω(nα(n)) lower bound

• upper-envelopes connection
also gives upper bound ??



TU e union complexity of fat triangles (cont’d)

Union complexity of n towers stabbed by a vertical line is O(n).Lemma:

Recall: we only need to worry about DD-vertices
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Union complexity of n towers stabbed by a vertical line is O(n).Lemma:

only consider triangular top of each towerProof:
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TU e union complexity of fat triangles (cont’d)

Union complexity of n towers stabbed by a vertical line is O(n).Lemma:

only consider triangular top of each towerProof:

now consider impact of rectangular bases:

each hole must be covered by a base

=⇒ single cell: O(nα(n))

[ in fact, special type: O(n) ]



TU e union complexity of fat triangles (cont’d)

Union complexity of n fat triangles is O(n log∗ n).Theorem:

Proof: 1. Reduce problem to bounding union complexity of towers.

2. Prove that number of HV-, HD-, and VD-vertices is O(n).

3. Prove that union complexity is O(n) if triangles are stabbed
by vertical line.

4. Use a clever scheme based on interval trees and intersection-
sensitive cuttings to get a recursion that solves to
O(n log∗ n).



TU e union complexity of fat triangles (cont’d)

Union complexity of n fat triangles is O(n log∗ n).Theorem:

Proof: 1. Reduce problem to bounding union complexity of towers.

2. Prove that number of HV-, HD-, and VD-vertices is O(n).

3. Prove that union complexity is O(n) if triangles are stabbed
by vertical line.

4. Use a clever scheme based on interval trees and intersection-
sensitive cuttings to get a recursion that solves to
O(n log∗ n).

Similar proof gives O(n2O(log∗ n)) bound for locally fat curved objects.



TU e

Algorithms and Data Structures
for Fat Objects and Low Density Scenes



TU e overview of results: algorithms and data structures

general

intersection searching approx

exact

ray shooting arbitrary

data structures: storage for O(polylog n) query time

BSP trees

depth orders

f -DOF motion planning

n2

n4 n3

n

n2n4

vertical n2 n log2 n

point location

—

n

n

constant density

constant fatness

}
}

n log n

nf n log n

n4/3 n log3 n

hidden-surface removal n4/3 n polylog n

algorithms

constant density

constant fatness}
(some assumptions omitted)

kinetic collision detection n2

in 3D

n polylog n
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fat objects:

• cover objects by simpler objects using canonical directions

canonical directions can be handled efficiently



TU e tricks of the trade

• replace objects by carefully chosen points (“guards”)

sets with low density

guards “represent” distribution of objects

fat objects:

• cover objects by simpler objects using canonical directions

canonical directions can be handled efficiently



TU e

Example: how to find and use guarding points



TU e Guarding points with respect to squares / cubes

set of n objects

density of S

set of 4n bounding-box vertices of the objects in S

S:

λ:

G:

Proof:

σ
d

diam ≥ d

Any square not containing bounding-box vertex intersects ≤ 4λ objects.
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set of n objects

density of S

set of 4n bounding-box vertices of the objects in S

S:

λ:

G:

Proof:

σ
d

diam ≥ d

diam(b) = d/
√

2

Any square not containing bounding-box vertex intersects ≤ 4λ objects.



TU e Guarding points with respect to squares / cubes

set of n objects

density of S

set of 4n bounding-box vertices of the objects in S

S:

λ:

G:

Proof:

σ
d

diam ≥ d

diam(b) = d/
√

2

Note: similar statement holds in higher dimensions.

Any square not containing bounding-box vertex intersects ≤ 4λ objects.



TU e Guarding points with respect to squares / cubes (cont’d)

Using vertices of polyhedral object as guards does not work.

not in 3D . . .



TU e Guarding points with respect to squares / cubes (cont’d)

Using vertices of polyhedral object as guards does not work.

. . . not even in 2D

not in 3D . . .



TU e Compressed quadtrees for low-density scenes

• size of compressed quadtree is linear

• works in any dimension

• can be used to do point location

• can be used to do map overlay

• can be used to obtain linear size BSP

• can be used to do approximate range searching
(range = convex region; data = low-density set)

• can be made I/O-efficient

Compressed quadtrees for low-density scenes
(based on dB-Haverkort-Thite-Toma ’10)



TU e Compressed quadtrees for low-density scenes

Compressed quadtrees for point sets:

Recursively partition square

• points in more than one quadrant:
split into quadrants

• all points in same quadrant: split into

– smallest quadtree square
containing all the poins

– donut (contains no points)

Stop when zero or one point left

compress paths with only one non-empty subtree into single nodes

number of cells: O(n)



TU e Compressed quadtrees for low-density scenes

Compressed quadtrees for point sets:

Recursively partition square

• points in more than one quadrant:
split into quadrants

• all points in same quadrant: split into

– smallest quadtree square
containing all the poins

– donut (contains no points)

Stop when zero or one point left

compress paths with only one non-empty subtree into single nodes

number of cells: O(n)



TU e Compressed quadtrees for low-density scenes

Compressed quadtrees for point sets:

Recursively partition square

• points in more than one quadrant:
split into quadrants

• all points in same quadrant: split into

– smallest quadtree square
containing all the poins

– donut (contains no points)

Stop when zero or one point left

compress paths with only one non-empty subtree into single nodes

number of cells: O(n)



TU e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 2: construct compressed quadtree for resulting set of points



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 2: construct compressed quadtree for resulting set of points



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 2: construct compressed quadtree for resulting set of points

. . . and put objects back



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 2: construct compressed quadtree for resulting set of points

. . . and put objects back



TU e

Step 1: replace objects by vertices of bounding boxes

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

• number of cells: O(n)
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. . . and put objects back

( λ = density )
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Compressed quadtrees for low-density scenes

• number of cells: O(n)

• number of objects per cell: O(λ)
O(λn) fragments

Reducing the number of fragments:

• sort bb-vertices in Z-order

• only keep every λ-th bb-vertex

NE

SESW

NW
NW ≺ NE ≺ SW ≺ SE
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Compressed quadtrees for low-density scenes

• number of cells: O(n)

• number of objects per cell: O(λ)
O(λn) fragments

Reducing the number of fragments:

• sort bb-vertices in Z-order

• only keep every λ-th bb-vertex

NE

SESW

NW
NW ≺ NE ≺ SW ≺ SE

at most 2λ− 1 bb-vertices per cell =⇒ still O(λ) objects / cell
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Compressed quadtrees for low-density scenes

• number of cells: O(n)

• number of objects per cell: O(λ)

• but depth can be linear
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Compressed quadtrees for low-density scenes

• number of cells: O(n)

• number of objects per cell: O(λ)

• but depth can be linear

sort bb-vertices in Z-order:

• P0 = P = p1, p2, p3, p4, p5, . . . , p4n

• P1 = p1, p3, p5, . . .

• P2 = p1, p5, . . .

Construct hierarchy of compressed
quadtrees
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TU e Compressed quadtrees for low-density scenes

every cell has O(1) children

number of levels is O(log n)
=⇒ point location in O(log n) time



TU e

Theorem: There is a compressed quadtree hierarchy of O(log n) depth
and O(n/λ) size where any leaf region intersects O(λ) objects.

S: set of n objects in Rd

λ: density of S

Compressed quadtrees for low-density scenes
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Example: how to use canonical directions



TU e Using canonical directions: exact range searching

report all points inside a query range2D range searching:

triangle

storagerange query time

halfplane

n2

n

log n+ k

n log n log n+ k

log n+ k

what if the range is a fat triangle?

rectangle
axis-parallel
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range is β-fat triangle: all angles ≥ β
β

canonical directions: 0, β, 2β, . . . , 2π − β
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TU e Using canonical directions: exact range searching

range is β-fat triangle: all angles ≥ β
β

canonical directions: 0, β, 2β, . . . , 2π − β

partition query triangle into four sub-triangles using canonical directions

subtriangle is intersection of an “axis-parallel” rectangle and half-plane

=⇒ combine halfplane and rectangle structures into single structure:

storage O(n log2 n), query time O(log3 n)



TU e Covering fat convex objects in 3D

[Aronov-dB-Gray ’06]

Improved bounds for

• ray shooting: storage O(n2+ε), query O(polylog n)

• intersection searching: storage O(n3+ε), query O(polylog n+k)

• range searching: storage O(n polylog n), query O(polylog n+k)

cover β-fat convex object by “towers”
using O(1/β2) canonical directions
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TU e Conclusions

• analysis not only as function of input size n,
but also as function of certain geometry-describing parameters

• by now, nice theory that leads to

– algorithms with much better scale-up behavior
. . . if geometry parameters are indeed constant

– often simpler, more practical algorithms

– better prediction of efficiency in practice ??

geometry-sentive analysis



TU e
Why local fatness ?

Standard fatness definition:
For any disk D with center in o, we have:

area(D ∩ o) ≥ γ · area(D)

the union complexity of locally γ-fat objects — revisited
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