TU/e

Computational Geometry
for
Fat Objects and Low Density Scenes

Mark de Berg

TU Eindhoven

\"

P
4

N
N

TU/e motivation

binary space partitions (BSPs): recursive subdivision
of space until in each region there is only one object

(or: constant number of objects)

Practice: BSPs are used

Theory: worst-case size ©(n?)
(Paterson-Yao '90)

12,748,510 triangles

TU /e geometry-sensitive analysis

e analysis not only as function of input size n,
but also as function of certain geometry-describing parameters

e leads (hopefully) to

— better prediction of when algorithms are efficient in practice

— simpler algorithms, designed with practical inputs in mind

TU/e

Shape parameter for individual objects:fatness

- fat triangles

~ |

—

o-fat triangle:
minimum angle at least o

TU/e Shape parameter for individual objects:fatness

- fat triangles

/l o-fat triangle:
minimum angle at least o

—

- -fat convex objects

definition 1 definition 2
Bout

m There are concentric balls

— B;, C o C Bgyt such that
i 9
o) > 3 diam(B;)

diam®(o) —

>

TU/e Definitions: fat objects (2)

Non-convex objects

fat not fat

TU/e Definitions: fat objects (2)

Non-convex objects

fat not fat 2

TU/e

fat

Definitions: fat objects (2)

Non-convex objects

not fat

[
fat objects should not have skinny parts
—

these objects are not fat

TU/e Definitions: fat objects (3)
— (locally) ~-fat object

% object o ‘ i g :
\/

For any ball B with center in 0 and not
containing o in its interior, we have:

vol(B o) > ~ - vol(B)

y

component of B M o containing center

TU/e Definitions: fat objects (3)
— (locally) ~-fat object

% object o ‘ i g :
\/

For any ball B with center in 0 and not
containing o in its interior, we have:

vol(B Mo) > v - vol(B) {

I

y

component of B M o containing center not locally fat

TU/e Definitions: fat objects (3)

— (locally) ~-fat object

% object o ‘ i g :
\/

For any ball B with center in 0 and not
containing o in its interior, we have:

vol(B o) > ~ - vol(B)

y

component of B M o containing center

fatness of o: largest ~
such that o is ~v-fat

|

I

not locally fat

TU/e geometry-describing parameters: density

e distribution parameter for sets of objects: density

@ diam(o) := diameter of o

TU/e geometry-describing parameters: density

e distribution parameter for sets of objects: density

@ diam(o) := diameter of o

van der Stappen '94

Q density of set S of objects:
> minimum A such that for any ball b :

#{0 € S : o intersects b, diam(o) > diam(b) }| < A

TU/e geometry-describing parameters: density (cont’'d)

Hope: density will in practice be a (small) constant.

density of set S of objects:

minimum A such that for any ball b :

#{0 € S : o intersects b, diam(o) > diam(b) }| < A

Does it makes sense?

object = facet of polytope

refining the object does not
increase the density significantly

TU/e geometry-describing parameters: density (cont’'d)

Hope: density will in practice be a (small) constant.

density of set S of objects:

minimum A\ such that for any ball b :

#{0 € S : o intersects b, diam(o) > diam(b) }| < A

Does it makes sense?

object = facet of polytope .-

refining the object does not
increase the density significantly

TU/e geometry-describing parameters: density (cont’'d)

Hope: density will in practice be a (small) constant.

density of set S of objects:

minimum A\ such that for any ball b :

#{0 € S : o intersects b, diam(o) > diam(b) }| < A

Does it makes sense?

object = facet of polytope .

refining the object does not
increase the density significantly

TU/e geometry-describing parameters: density (cont’'d)

Hope: density will in practice be a (small) constant.

density of set S of objects:

minimum A\ such that for any ball b :

#{0 € S : o intersects b, diam(o) > diam(b) }| < A

Does it makes sense?

polyhedral model of a building

P 4

increasing number of rooms does not increase density significantly

TU/e geometry-describing parameters: density (cont’'d)

Hope: density will in practice be a (small) constant.

density of set S of objects:

minimum A\ such that for any ball b :

#{0 € S : o intersects b, diam(o) > diam(b) }| < A

Does it makes sense?

polyhedral model of a building

e e

increasing number of rooms does not increase density significantly

TU/e fatness vs. density: disjoint objects

van der Stappen '94

A set S of disjoint (-fat objects has density O(1/03).

TU/e fatness vs. density: disjoint objects

van der Stappen '94

A set S of disjoint (-fat objects has density O(1/03).

Proof: we must show that for any ball b:

#{o : o intersects b, diam(o) > diam(b)} = O(1/p)

TU/e fatness vs. density: disjoint objects

van der Stappen '94

A set S of disjoint (-fat objects has density O(1/03).

Proof: we must show that for any ball b:

#{o0 : o intersects b, diam(o) > diam(b)} = O(1/05)

e ecach object o that we must count
covers a fraction () of the ball by

e objects are disjoint

TU/e fatness vs. density: intersecting objects

S: n locally ~-fat objects
F- “edges” of boundary of union of S

dB '05
The set E has density O(1/7).

SN

TU/e fatness vs. density: intersecting objects

S: n locally v-fat objects
[)- “edges” of boundary of union of S

dB '05
The set E has density O(1/7).

%
c@ﬁ

TU/e fatness vs. density: intersecting objects

S: n locally v-fat objects
[- “edges” of boundary of union of S

dB '05
The set E has density O(1/7).

intersects O(1/7)
large “edges”

—

TU/e this talk

e combinatorics

— overview of results

— recent result: union of fat triangles
e algorithms and data structures

— overview of results

— some tools and examples

TU/e

Combinatorics
for Fat Objects and Low Density Scenes

TU/e Fat objects: bounds on the union complexity

n arbitrary triangles:

(00

- union complexity can be O (n?)

[Matousek et al. '94, Pach-Tardos '02]
n fat triangles: complexity is O(nloglogn)
Conjecture: ©(na(n))

TU/e Fat objects: bounds on the union complexity

n arbitrary triangles:

(00

union complexity can be O (n?)

[Matousek et al. '94, Pach-Tardos '02]
n fat triangles: complexity is O(nloglogn)
Conjecture: ©(na(n))

Ezra-Aronov-Sharir (SODA 11): O(n2%(™ log* n)

TU/e Fat objects: bounds on the union complexity

n arbitrary triangles:

(00

union complexity can be O (n?)

[Matousek et al. '94, Pach-Tardos '02]
n fat triangles: complexity is O(nloglogn)
Conjecture: ©(na(n))

Ezra-Aronov-Sharir + dB: O(nlog™ n)

TU/e Fat objects: bounds on the union complexity

n arbitrary triangles:

(00

union complexity can be O (n?)

[Matousek et al. '94, Pach-Tardos '02]
n fat triangles: complexity is O(nloglogn)
Conjecture: ©(na(n))

Ezra-Aronov-Sharir + dB: O(nlog™ n)

Efrat-Sharir '97, Efrat-Katz '98, Efrat '05, dB '05, dB’'10

n fat (possibly non-convex and/or curved) objects:
complexity is O(As12(n)logn)
Conjecture: O(Asi2(n))

TU/e Fat objects: bounds on the union complexity

n arbitrary triangles:

(00

- union complexity can be O (n?)

[Matousek et al. '94, Pach-Tardos '02]
n fat triangles: complexity is O(nloglogn)
Conjecture: ©(na(n))

Ezra-Aronov-Sharir + dB: O(nlog™ n)

Efrat-Sharir '97, Efrat-Katz '98, Efrat '05, dB '05, dB’'10

n fat (possibly non-convex and/or curved) objects:

complexity is O(As12(n)logn)
O(RQO(IOg* n))

TU/e overview of results: combinatorics (2)

Union complexity: objects in 3D

e worst case: O(n?)
e Pach et al. '03: arbitrarily oriented equal-sized cubes: O(n?"¢)
o Ezra-Sharir '07: fat tetrahedra: O(n?*)

e Aronov et al. '04: k-round objects: O(n?"¢)

e fat convex polyhedra: open

decompositions of (non-convex) polyhedra into tetrahedra

e worst case: O(n?)

e dB-Gray '08: fat polyhedra with fat faces: O(n)

TU/e Some more results

complexity of Voronoi diagrams on terrains
Moet et al. '06, Aronov-dB-Thite '08

e terrain with n triangles, m sites
e worst-case: 2(n?) even for two sites

e on realistic terrain: O(n + m+/n)

~——— complexity of visibility maps of terrains

7/ Moet et al. '06, dB-Haverkort-Tsirogiannis '09

e worst case: O(n?)

e realistic terrain: O(n\/n)
e realistic terrain with noise: ©(n)

river networks: O(n?) complexity on realistic terrains, instead of O(n?)

TU/e

The union complexity of ~v-fat triangles

(and of locally «-fat curved objects)

(joint work with Boris Aronov, Esther Ezra, and Micha Sharir)

all angles at least ~y

~
TS~
1 ,,’
1 -
'/
LAY
4 \
4 \
/ \

TU/e the union complexity of fat triangles

basic tool: Merging Lemma

Let A and B be two sets of locally v-fat objects in R?. Then

UC(AUB) = O((1/7) - (UC(A) +UC(B))),

where UC' = union complexity

TU/e the union complexity of fat triangles

basic tool: Merging Lemma

Let A and B be two sets of locally ~-fat objects in R?. Then

UC(AUB) = O((1/7) - (UC(A) +UC(B))),

where UC' = union complexity

Note: not true for non-fat objects

TU/e the union complexity of fat triangles

basic tool: Merging Lemma

Let A and B be two sets of locally ~-fat objects in R?. Then
UC(AUB) = O((1/y)-(UC(A)+UC(B))),

where UC' = union complexity

(alternative for polygonal objects: Combination Lemma)

Note: not true for non-fat objects

TUle union complexity of fat triangles (cont'd)

another tool
e cover each triangle by subtriangles with canonical shape

67/~ canonical directions subtriangles have two edges
with canonical directions

> /3

N

v/3

TU/e union complexity of fat triangles (cont'd)

another tool
e cover each triangle by subtriangles with canonical shape

67/~ canonical directions subtriangles have two edges
with canonical directions
> /3
\v/ 3
T orginal set of n triangles = Ty, Ty, ...: O(1/v?) sets of subtriangles

within each set all subtriangles are fat
and use the same canonical directions

(in fact, O(1/~) sets suffice in this problem)

TU/e union complexity of fat triangles (cont'd)

each vertex of union of 7' is

Tli
rx&\ e a vertex of some union | JT;

\ e a vertex of some union | J(7; UT})

TU/e

union complexity of fat triangles (cont'd)

each vertex of union of T’ is
e a vertex of some union | JT;

e a vertex of some union | J(7; UT})

Merging Lemma
> ; UC(T; UT;)
= Y, O(UC(T;) + UC(Ty))
= (# subsets) - 32, O(UC(T,))

= 0(1/4%)-0(>_,UC(Ty))

TU/e union complexity of fat triangles (cont'd)

each vertex of union of 7' is

rx&\ e a vertex of some union | JT;

\ e a vertex of some union | J(7; UT})

Merging Lemma
> ; UC(T; UT;)
= Y, O(UC(T;) + UC(Ty))
: = (# subsets) - 32, O(UC(T,))

. = O(1/7%) - 0(3, UC(Ty))

bound for fat canonical triangles carries over to fat triangles

TU/e union complexity of fat triangles (cont'd)

New problem: bound union complexity of n canonical triangles
e cach triangle has a horizontal bottom edge
e ceach triangle has vertical left edge

e angles at top corner and right corner are at least v
(in fact, can get angles arbitrary close to 45°)

TU/e union complexity of fat triangles (cont'd)

New problem: bound union complexity of n canonical triangles
e cach triangle has a horizontal bottom edge
e ceach triangle has vertical left edge

e angles at top corner and right corner are at least v
(in fact, can get angles arbitrary close to 45°)

a further reduction:

e cover triangles by towers:
fat triangle on top of long
(but still fat) rectangle

TU/e union complexity of fat triangles (cont'd)

New problem: bound union complexity of n canonical triangles
e cach triangle has a horizontal bottom edge
e ceach triangle has vertical left edge

e angles at top corner and right corner are at least v
(in fact, can get angles arbitrary close to 45°)

a further reduction:

e cover triangles by towers:
fat triangle on top of long
(but still fat) rectangle

TU/e union complexity of fat triangles (cont'd)

New problem: bound union complexity of n canonical triangles
e cach triangle has a horizontal bottom edge
e ceach triangle has vertical left edge

e angles at top corner and right corner are at least v
(in fact, can get angles arbitrary close to 45°)

a further reduction:

e cover triangles by towers:
fat triangle on top of long
(but still fat) rectangle

TU/e union complexity of fat triangles (cont'd)

New problem: bound union complexity of n vertical towers

triangular top:
\ angles between 44° and 46°

assume w.l.o.g.:

rectangular base:
height = 2 X width

TU/e

New problem: bound union complexity of n vertical towers

triangular top:
\ angles between 44° and 46°

union complexity of fat triangles (cont'd)

assume w.l.o.g.:

rectangular base:
height = 2 X width

crucial property:
diagonal edge of one tower cannot

simultaneously intersect top edge and
bottom edge of base of another tower

cannot happen

TU/e union complexity of fat triangles (cont'd)

The union complexity of towers

VD-vertex

DD-vertex

e

.................. N

HD-vertex

HV-vertex

TU/e union complexity of fat triangles (cont'd)

Lemma: The number of HV-, HD, and VD-vertices is O(n).

TU/e union complexity of fat triangles (cont'd)
Lemma: The number of HV-, HD, and VD-vertices is O(n).

Proof:

HV-vertices HD-vertices

TU/e union complexity of fat triangles (cont'd)
Lemma: The number of HV-, HD, and VD-vertices is O(n).

Proof:

HV-vertices HD-vertices

|
|
[l
|
|
[l
|
|
[l
|
|
[l
"§
RS
[l .
] "
1 -
[.
.
Q "
[}
[l

TU/e union complexity of fat triangles (cont'd)
Lemma: The number of HV-, HD, and VD-vertices is O(n).

Proof:

HV-vertices HD-vertices

e [OQQs
b \

TU/e union complexity of fat triangles (cont'd)
Lemma: The number of HV-, HD, and VD-vertices is O(n).

Proof:

HV-vertices HD-vertices

...................

.-...O . os"
Q ?: \

TU/e union complexity of fat triangles (cont'd)

It remains to bound the number of DD-vertices

e upper-envelope complexity
gives 2(na(n)) lower bound

e upper-envelopes connection
also gives upper bound 77

TU/e union complexity of fat triangles (cont'd)

Lemma: Union complexity of n towers stabbed by a vertical line is O(n).

Recall: we only need to worry about DD-vertices

TU/e union complexity of fat triangles (cont'd)

Lemma: Union complexity of n towers stabbed by a vertical line is O(n).

Proof: only consider triangular top of each tower

TU/e union complexity of fat triangles (cont'd)

Lemma: Union complexity of n towers stabbed by a vertical line is O(n).

Proof: only consider triangular top of each tower

now consider impact of rectangular bases:

TU/e union complexity of fat triangles (cont'd)

Lemma: Union complexity of n towers stabbed by a vertical line is O(n).

Proof: only consider triangular top of each tower

now consider impact of rectangular bases:

each hole must be covered by a base

TU/e union complexity of fat triangles (cont'd)

Lemma: Union complexity of n towers stabbed by a vertical line is O(n).

Proof: only consider triangular top of each tower

now consider impact of rectangular bases:

each hole must be covered by a base

— single cell: O(na(n))

[in fact, special type: O(n)]

TU/e union complexity of fat triangles (cont'd)

Theorem: Union complexity of n fat triangles is O(nlog™ n).

Proof: 1. Reduce problem to bounding union complexity of towers.

2. Prove that number of HV-, HD-, and VD-vertices is O(n).

3. Prove that union complexity is O(n) if triangles are stabbed
by vertical line.

4. Use a clever scheme based on interval trees and intersection-
sensitive cuttings to get a recursion that solves to

O(nlog™ n).
O

TU/e union complexity of fat triangles (cont'd)

Theorem: Union complexity of n fat triangles is O(nlog™ n).

Proof: 1. Reduce problem to bounding union complexity of towers.

2. Prove that number of HV-, HD-, and VD-vertices is O(n).

3. Prove that union complexity is O(n) if triangles are stabbed
by vertical line.

4. Use a clever scheme based on interval trees and intersection-
sensitive cuttings to get a recursion that solves to

O(nlog™ n).
O

Similar proof gives O(n2°0°8" ™)) bound for locally fat curved objects.

TU/e

Algorithms and Data Structures
for Fat Objects and Low Density Scenes

TU/e overview of results: algorithms and data structures

data structures: storage for O(polylog n) query time in 3D

general
BSP trees n? n
point location nlogn n
Intersection searching | approx| — n
exact n ns
ray shooting arbitrary n4 n?
vertical n? nlog® n
algorithms (some assumptions omitted)
f-DOF motion planning n' nlogn
depth orders n4/3 nlog® n
hidden-surface removal n?/3 | n polylog n
kinetic collision detection | n? n polylog n

» constant density

» constant fatness

constant density
\

y constant fatness

TUle tricks of the trade

fat objects:

e cover objects by simpler objects using canonical directions

% & canonical directions can be handled efficiently

TU/e tricks of the trade

fat objects:

e cover objects by simpler objects using canonical directions

% & canonical directions can be handled efficiently

sets with low density

e replace objects by carefully chosen points (“guards”)

0
A & guards “represent” distribution of objects

TU/e

Example: how to find and use guarding points

TU/e Guarding points with respect to squares / cubes

S: set of n objects
A: density of S

(G: set of 4n bounding-box vertices of the objects in S

Any square not containing bounding-box vertex intersects < 4\ objects.

Proof:

TU/e Guarding points with respect to squares / cubes

S: set of n objects
A: density of S

(G: set of 4n bounding-box vertices of the objects in S

Any square not containing bounding-box vertex intersects < 4\ objects.

Proof:

U’S diam(b) = d/+/2
.................. dlam Z d

TU/e Guarding points with respect to squares / cubes

S: set of n objects
A: density of S

(G: set of 4n bounding-box vertices of the objects in S

Any square not containing bounding-box vertex intersects < 4\ objects.

Proof:

U’S diam(b) = d/+/2
.................. dlam 2 d

Note: similar statement holds in higher dimensions.

TU/e Guarding points with respect to squares / cubes (cont'd)

Using vertices of polyhedral object as guards does not work.

d

not in 3D ...

TU/e Guarding points with respect to squares / cubes (cont'd)

Using vertices of polyhedral object as guards does not work.

d

VA4

not in 3D ... \
E\\
NN N\ N\ >

...hot even in 2D

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes
(based on dB-Haverkort-Thite-Toma '10)

e size of compressed quadtree is linear
e works in any dimension

e can be used to do point location

e can be used to do map overlay

e can be used to obtain linear size BSP

e can be used to do approximate range searching
(range = convex region; data = low-density set)

e can be made |/O-efficient

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for point sets:

compress paths with only one non-empty subtree into single nodes

Recursively partition square

--------------- 5 e e points in more than one quadrant:
e split into quadrants

e all points in same quadrant: split into

--------------- . — smallest quadtree square
- containing all the poins

— donut (contains no points)
number of cells: O(n)
Stop when zero or one point left

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for point sets:

compress paths with only one non-empty subtree into single nodes

Recursively partition square

--------------- 5 e e points in more than one quadrant:
e split into quadrants

e all points in same quadrant: split into

--------------- . — smallest quadtree square
- containing all the poins

— donut (contains no points)
number of cells: O(n)
Stop when zero or one point left

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for point sets:

compress paths with only one non-empty subtree into single nodes

Recursively partition square

--------------- —F e points in more than one quadrant:
° o split into quadrants

e all points in same quadrant: split into

--------------- . — smallest quadtree square
- containing all the poins

— donut (contains no points)
number of cells: O(n)
Stop when zero or one point left

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

D
d o

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

D
d

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

.
i

(O

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

24

S
ilg

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

(K J
Y Py KJCR
o [)
[) o
o 14 ° °
o o °
[) [)

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

...and put objects back

(K J
Y Py KJCR
o [)
[) o
® ® [) [)
o o °
[) [)

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

...and put objects back

Pl N

P

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes (A = density)

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

...and put objects back

g ” e number of cells: O(n)

C\) e number of objects per cell: O(\)

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes (A = density)

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

...and put objects back

g ” e number of cells: O(n)

C\) e number of objects per cell: O(\)
ay

Any square not containing bounding-box vertex intersects < 4\ objects.

TU/e

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

(A = density)

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

/

-

\—1

N
%

...and put objects back

e number of cells: O(n)

e number of objects per cell: O(\)

donut can be covered
O | by six squares

Any square not containing bounding-box vertex intersects < 4\ objects.

TU/e

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

(A = density)

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

/

-

\—1

N
%

...and put objects back

e number of cells: O(n)

e number of objects per cell: O(\)

donut can be covered
L1 | by six squares

Any square not containing bounding-box vertex intersects < 4\ objects.

TU/e

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

(A = density)

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

/

-

\—1

N
%

...and put objects back

e number of cells: O(n)

e number of objects per cell: O(\)

donut can be covered
L1 | by six squares

Any square not containing bounding-box vertex intersects < 4\ objects.

TU/e

Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

(A = density)

Step 1: replace objects by vertices of bounding boxes

Step 2: construct compressed quadtree for resulting set of points

/

-

\—1

N
%

...and put objects back

e number of cells: O(n)

e number of objects per cell: O(\)

donut can be covered
[by six squares

Any square not containing bounding-box vertex intersects < 4\ objects.

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

e number of cells: O(n)

} O(An) fragments

e number of objects per cell: O(\)

Pl BN

P

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

e number of cells: O(n) O(An) fragments

e number of objects per cell: O(\)

Reducing the number of fragments:

Pl BN

C‘\) e sort bb-vertices in Z-order

A
V==
N

e only keep every \-th bb-vertex

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

e number of cells: O(n) O(An) fragments

e number of objects per cell: O(\)

Reducing the number of fragments:

C) e sort bb-vertices in Z-order
) NW/|NE
! NW < NE < SW < SE
\<\\/\ () SW| SE

e only keep every \-th bb-vertex

TU/e Compressed quadtrees for low-density scenes

Compressed quadtrees for low-density scenes

e number of cells: O(n) O(An) fragments

e number of objects per cell: O(\)

Reducing the number of fragments:

C) e sort bb-vertices in Z-order
) NW/|NE
! NW < NE < SW < SE
\<\\/\ () SW| SE

e only keep every \-th bb-vertex

at most 2\ — 1 bb-vertices per cell = still O(\) objects / cell

TU/e Compressed quadtrees for low-density scenes
Compressed quadtrees for low-density scenes
e number of cells: O(n)

e number of objects per cell: O(\)

e but depth can be linear

TU/e Compressed quadtrees for low-density scenes
Compressed quadtrees for low-density scenes
e number of cells: O(n)

e number of objects per cell: O(\)

e but depth can be linear

sort bb-vertices in Z-order:
: : ki ® Py =P =p1,p2,03,P4,D5, - - -, Dan
. .| e P =p1,p3,D5,---
°«—p o . o P =p1,ps,---
‘Ll |° Construct hierarchy of compressed
N quadtrees

TU/e Compressed quadtrees for low-density scenes

TU/e

Compressed quadtrees for low-density scenes

:I:_

every cell has O(1) children

— point location in O(logn) time

number of levels is O(logn)

TU/e Compressed quadtrees for low-density scenes

S: set of n objects in R?
A: density of S

Theorem: There is a compressed quadtree hierarchy of O(logn) depth
and O(n/)\) size where any leaf region intersects O()\) objects.

TU/e

Example: how to use canonical directions

TU/e

2D range searching:

Using canonical directions: exact range searching

report all points inside a query range

range storage query time
triangle n2 logn + k
axis-parallel

B nlogn logn + k
halfplane n logn + k

what if the range is a fat triangle?

TU/e Using canonical directions: exact range searching

range is O-fat triangle: all angles > (3

B
canonical directions: 0,03,23,....27 — (3 }@5

TU/e Using canonical directions: exact range searching

range is (3-fat triangle: all angles > 3

B
canonical directions: 0,03,20,...,27 — (3 %j

partition query triangle into four sub-triangles using canonical directions

L 4 4

TU/e Using canonical directions: exact range searching

range is B-fat triangle: all angles >

B
canonical directions: 0,03,20,...,27 — (3 ‘5

partition query triangle into four sub-triangles using canonical directions

L 4 4

subtriangle is intersection of an “axis-parallel” rectangle and half-plane

— combine halfplane and rectangle structures into single structure:

storage O(nlog®n), query time O(log® n)

Covering fat convex objects in 3D

[Aronov-dB-Gray '06]

cover (3-fat convex object by “towers” ‘
using O(1/3?) canonical directions

Improved bounds for
e ray shooting: storage O(n?*¢), query O(polylog n)
e intersection searching: storage O(n>"¢), query O(polylog n + k)

e range searching: storage O(n polylog n), query O(polylog n+k)

TU/e Conclusions

geometry-sentive analysis

e analysis not only as function of input size n,
but also as function of certain geometry-describing parameters

e by now, nice theory that leads to

— algorithms with much better scale-up behavior
... If geometry parameters are indeed constant
— often simpler, more practical algorithms

— better prediction of efficiency in practice 77

TUle the union complexity of locally ~-fat objects — revisited

Why local fatness 7

Standard fatness definition:
For any disk D with center in o0, we have:

area(D No) > ~ -area(D)

TUle the union complexity of locally ~-fat objects — revisited

Why local fatness 7

Standard fatness definition:
For any disk D with center in o0, we have:

area(D No) > ~ -area(D)

TU/e the union complexity of locally ~-fat objects — revisited

Why local fatness 7

Standard fatness definition:
For any disk D with center in o0, we have:

area(D No) > ~ -area(D)

E ‘

