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PART I
Seven Wonders of 2010

(in discrete geometry and environs)



The Erdős distinct distances problem

I n points in the plane

I g(n) := smallest possible number of distinct distances

I known: g(n) = O(n/
√

log n)

I Guth and Katz, 2010: g(n) = Ω(n/ log n)

I Completion of bold ideas of Elekes (and Dvir and Sharir
and. . . )
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Size of ε-nets for geometric set systems

I X ⊂ Rd finite, ε > 0 given

I Wanted: ε-net w.r.t. halfspaces, i.e., N ⊆ X that
intersects all large halfspaces H = ones with
|H ∩ X | ≥ ε|X |.

I Based on a general result and known since 1987:
|N | = O(1

ε
log 1

ε
) suffices.

I Alon 2009: first superlinear lower bound.
I Pach and Tardos 2010: |N | = Ω(1

ε
log 1

ε
) really needed,

for d ≥ 4.
I More: ε-nets w.r.t. axis-parallel rectangles in the plane

. . . order 1
ε log log 1

ε .

I Lesson: a Ramsey-type theorem can sometimes solve
“irregularity of distribution” problem, even quantitatively!
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Selection lemma topologically

I P . . . a set of n points in Rd

I [Bárány] ∀d ∃cd > 0:
There is a point a ∈ Rd contained in ≥ cd fraction of all
d-simplices spanned by P .

I Gromov 2010: amazing new topological proof, with
substantially improved lower bound for cd .

I Karasev 2010: 2-page elementary version.
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The Hirsch conjecture disproved

I Hirsch: the graph of a d-dimensional convex polytope
with n facets has diameter at most n − d?!?

I Santos 2010: NO, diameter can be at ≥ (1 + ε)(n − d),
for some specific small ε0.

I Upper bound only nO(log d) [Kalai, Kleitman]
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The long randomized simplex

I The simplex method for linear programming: very good in
practice, but is it polynomial??

I Klee & Minty NO, exponential for several deterministic
pivoting rules.

I Maybe randomized rules could help?

I RANDOM FACET subexponential, roughly eO(
√

n).

I Friedmann, Dueholm, Zwick 2010: RANDOM FACET
no better than that, and RANDOM EDGE also at least
about en1/4

.

I PR: also won the Zadeh $1000 bet.

I New technology for building hard instances of linear
programs from randomized parity games.
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Balanced colorings semidefinitely

I Roth: for an arbitrary red/blue coloring of {1, 2, . . . , n},
there is always an arithmetic progression where one color
outnumbers the other by at least cn1/4.

I One of many problems in discrepancy theory.

I Beck’s partial coloring method & some more tricks: a
coloring with discrepancy O(n1/4) exists.

I Bansal 2010: such a coloring can be computed in
polynomial time (well, up to some logs).

I Also makes many other results on discrepancy
constructive.

I Semidefinite relaxation, rounding by SDP-driven random
walk.

I New structural understanding; e.g., discrepancy of a union
of two set systems.
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Log-concavity for the chromatic polynomial

I A graph G ; p(n) := number of proper colorings of G with
n colors.

I Fact: p(n) is a polynomial: the chromatic polynomial.

I p(x) =
∑d

i=0 aix
i .

I Huh 2010: (a0, a1, . . . , ad) log-concave, and
consequently unimodal.

I Singularities of local analytic functions, mixed
multiplicities of ideals,. . .
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PART II
Distinct Distances and
Other Algebraic Magic



Erdős’ 1946 problems

I I (m, n), maximum possible number of incidences of m
points and n lines in the plane;

I maximum possible number of unit distances among n
points in the plane;

I ≈ maximum possible number of incidences of n points and n
unit circles in the plane

I minimum possible number of distinct distances
determined by n points in the plane.



Erdős’ 1946 problems

I I (m, n) tight upper bound by Szemerédi and Trotter in
1983 (and several simpler proofs since then)

I in particular, I (n, n) = Θ(n4/3)

I for unit distances, the same methods also yield O(n4/3)

I but lower bound smaller than n1+δ for every fixed δ > 0.
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Unit distances

I Valtr: there exist strictly convex norms with Ω(n4/3) unit
distances

I . . . algebraic properties of the circle needed!

I [M.] there exist strictly convex norms admitting only
O(n log n log log n) unit distances.
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Distinct distances (almost) resolved

I Guth and Katz: Ω(n/ log n) distinct distances; tight up to√
log n.

I Several ideas:
I Elekes: count isometries mapping some pair of points of P to

another;
I convert the problem to restricted point/line incidences in R3;
I Dvir: low-degree polynomial vanishing on the lines;
I 19th century algebraic geometry (reguli, ruled surfaces,

flecnode polynomial,. . . );
I polynomial partitions.

I Simplifications & new discoveries surely forthcoming.



Partitioning by polynomials

I P ⊂ Rd an n-point set

I f ∈ R[x1, . . . , xd ] polynomial in d variables;
Z = Z (f ) ⊆ Rd its zero set

I Definition: f is an r -partitioning polynomial for P if no
component of Rd \ Z (f ) contains more than n/r points
of P .

I Theorem [Guth, Katz]: Every P ⊂ Rd has an
r -partitioning polynomial of degree O(r 1/d).
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Partitioning by polynomials

I Theorem [Guth, Katz]: Every P ⊂ Rd has an
r -partitioning polynomial of degree O(r 1/d).

I Proof: (clever but) simple!
I Ham sandwich theorem: every k sets in Rk can be

simultaneously bisected by a hyperplane.
I Polynomial ham sandwich theorem: every

(
D+d−1

d

)
sets in Rd

can be simultaneously bisected by Z (f ), with a polynomial f
of degree ≤ D.

I Proof:
Z (f1) bisects P into P1, P2;
Z (f2) bisects P1, P2 into P3, P4, P5, P6;
Z (f3) bisects P3, P4, P5, P6 into P7, P8, . . . ,P14 (8 sets)
. . . finish when there are more than r sets.

I f := f1 × f2 × · · · ; count degree.
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Partitioning by polynomials

I Theorem [Guth, Katz]: Every P ⊂ Rd has an
r -partitioning polynomial of degree O(r 1/d).

I Similar to earlier tools like cuttings and simplicial
partitions.

I (Currently) less algorithmic, but may be more powerful in
some respects (d ≥ 3).

I Problem (& work in progress): what if many points of P
end up in Z (f ) (and thus not really partitioned)?



Szemerédi,Trotter: I(n, n) = O(n4/3)

I Proof [Kaplan,M.,Sharir]; probably observed by others too.

I (Old) lemma: I (P, L) ≤ |L|+ |P|2.

I Now P ⊂ R2 n points; L n lines. Set r := n2/3, f is an
r -partitioning polynomial, deg(f ) = O(n1/3).

I P0 points in Z = Z (f );
I P1, P2, . . . , points in components of R2 \ Z ;
I L0 lines contained in Z ;
I Li lines incident with Pi (not disjoint!).

I |L0| ≤ D = O(n1/3); responsible for O(n4/3) incidences.

I ` ∈ L \ L0 ⇒ |` ∩ Z | ≤ D = O(n1/3).
I In particular, |` ∩ P0| = O(n1/3); so P0 is OK.

I Remains:

I
∑

i≥1 I (Pi , Li )
lemma

≤
∑

i |Li |+
∑

i |Pi |2
I
∑

i |Li | ≤ (D + 1)|L| = O(n4/3)
I
∑

i |Pi |2 ≤ (maxi |Pi |)
∑

i |Pi | ≤ (n/r) · n = O(n4/3).
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Enriching discrete geometry with algebra

I Sum-product theorems, important mainly in finite fields.
Elekes; Bourgain, Katz, and Tao; . . .

I Purdy’s conjecture and similar. Elekes and Rónyai; Elekes,
Simonovits, and Szabó

I Joints of lines in R3: Guth, Katz; Elekes, Kaplan, Sharir,
Shustin; Quillodrán; building on Dvir’s trick.

I Unit distances with rational angles O(n1+δ): Schwartz,
Solymosi, De Zeeuw.

I Surely I forgot/overlooked some . . .
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