Algorithmic Geometry of Numbers

New and old algorithms and open problems around shortest and closest lattice vectors

EuroCG, March 29, 2011

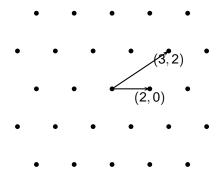
Friedrich Eisenbrand EPFL

1. Geometry of Numbers

Lattices

Lattice

 $\Lambda(A) = \{Ax \colon x \in \mathbb{Z}^n\}$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular matrix



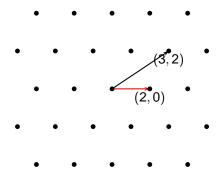
A Central Problem : Shortest Vector

Given basis *A*, find shortest nonzero vector of $\Lambda(A)$.

Lattices

Lattice

 $\Lambda(A) = \{Ax \colon x \in \mathbb{Z}^n\}$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular matrix



A Central Problem : Shortest Vector

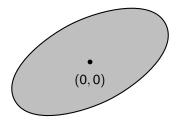
Given basis *A*, find shortest nonzero vector of $\Lambda(A)$.

Minkowski's theorem

Existence of short vectors

Let $K \subseteq \mathbb{R}^n$ be convex body which is symmetric around origin ($x \in K$ implies $-x \in K$).

If $vol(K) > 2^n$, then K contains $v \in \mathbb{Z}^n \setminus \{0\}$.

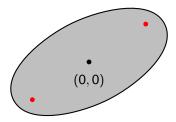


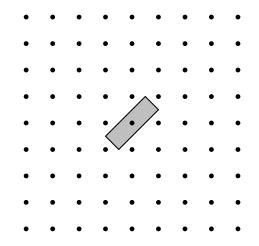
Minkowski's theorem

Existence of short vectors

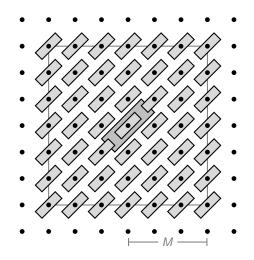
Let $K \subseteq \mathbb{R}^n$ be convex body which is symmetric around origin ($x \in K$ implies $-x \in K$).

If $vol(K) > 2^n$, then K contains $v \in \mathbb{Z}^n \setminus \{0\}$.

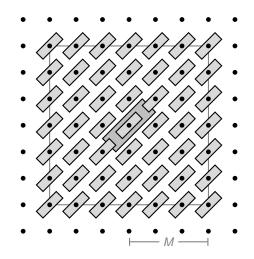




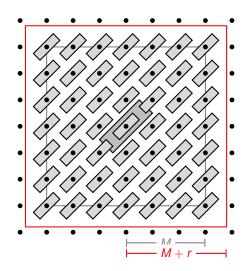
To show : If $K \cap \mathbb{Z} = \{0\}$, then $vol(K) \leq 2^n$.



Translates $(1/2) \cdot K + v$, $v \in \mathbb{Z}^n$, $||v||_{\infty} \leq M$ cannot intersect! $(1/2)k_1 + v_1 = (1/2)k_2 + v_2$ implies $0 \neq v_1 - v_2 = (1/2)k_2 - (1/2)k_1 \in K$.



Union of translates : $vol = (2 \cdot M + 1)^n \cdot vol(K)/2^n$.

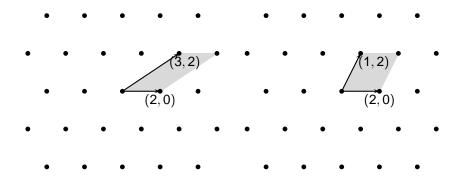


Union of translates : $\operatorname{vol} = (2 \cdot M + 1)^n \cdot \operatorname{vol}(K)/2^n$. Outer box : $\operatorname{vol} = (2M + 2r)^n$. As $M \to \infty$, ratio of blue numbers $\to 1$ and thus $\operatorname{vol}(K)/2^n \leq 1$.

Lattice determinant

Determinant of $\boldsymbol{\Lambda}$

A basis of Λ , then $|\det(A)|$ is invariant of Λ called lattice determinant

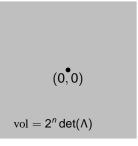


Minkowski's convex body theorem (V 2.0)

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice and $K \subseteq \mathbb{R}^n$ be a convex body of volume $\operatorname{vol}(K) \ge 2^n \operatorname{det}(\Lambda)$ that is symmetric about the origin. *K* contains nonzero lattice point.

Existence of short vectors

A has nonzero lattice point v with $\|v\|_{\infty} \leq \sqrt[n]{\det(\Lambda)}$



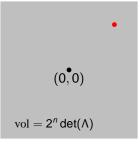
 $\vdash \sqrt[n]{\det(\Lambda)} \dashv$

Minkowski's convex body theorem (V 2.0)

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice and $K \subseteq \mathbb{R}^n$ be a convex body of volume $\operatorname{vol}(K) \ge 2^n \operatorname{det}(\Lambda)$ that is symmetric about the origin. *K* contains nonzero lattice point.

Existence of short vectors

A has nonzero lattice point v with $||v||_{\infty} \leq \sqrt[n]{\det(\Lambda)}$



 $\vdash \sqrt[n]{\det(\Lambda)} \dashv$

2. Application : Diophantine Approximation

Rounding a vector

Theorem (Dirichlet)

Given : $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $Q \in \mathbb{N}$ There exist : $q \in \mathbb{N}$ and $p_1, \ldots, p_n \in \mathbb{Z}$ with

 $1 \leqslant q \leqslant Q^n$ and $|q \alpha_i - p_i| < 1/Q$.

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & \alpha(1) \\ 0 & 1 & \cdots & 0 & \alpha(2) \\ & \ddots & & \\ 0 & 0 & \cdots & 1 & \alpha(n) \\ 0 & 0 & \cdots & 0 & 1/Q^{n+1} \end{pmatrix}$$

$${}^{n+1}\sqrt{\det(\Lambda)} = 1/Q$$

Rounding a vector

Theorem (Dirichlet)

Given : $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $Q \in \mathbb{N}$ There exist : $q \in \mathbb{N}$ and $p_1, \ldots, p_n \in \mathbb{Z}$ with

 $1 \leqslant q \leqslant Q^n$ and $|q \alpha_i - p_i| < 1/Q$.

$$\begin{pmatrix} \mathbf{p}_{1} & \mathbf{p}_{2} & \dots & \mathbf{p}_{n} & \mathbf{q} \\ 1 & 0 & \dots & 0 & \alpha(1) \\ 0 & 1 & \dots & 0 & \alpha(2) \\ & \ddots & & \\ 0 & 0 & \dots & 1 & \alpha(n) \\ 0 & 0 & \dots & 0 & 1/Q^{n+1} \end{pmatrix}$$

$${}^{n+1}\sqrt{\det(\Lambda)} = 1/Q$$

Rounding a vector

Theorem (Dirichlet)

Given : $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $Q \in \mathbb{N}$ There exist : $q \in \mathbb{N}$ and $p_1, \ldots, p_n \in \mathbb{Z}$ with

$$1 \leqslant q \leqslant Q^n$$
 and $|q \alpha_i - p_i| < 1/Q$.

$$\begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_n & \mathbf{q} \\ 1 & 0 & \dots & 0 & \alpha(1) \\ 0 & 1 & \dots & 0 & \alpha(2) \\ & \ddots & & \\ 0 & 0 & \dots & 1 & \alpha(n) \\ 0 & 0 & \dots & 0 & 1/Q^{n+1} \end{pmatrix}$$

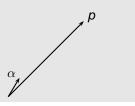
$$\sqrt[n+1]{\det(\Lambda)} = 1/Q$$

Rounding $c \in \mathbb{Z}^n$

Set
$$\alpha := \mathbf{c} / \|\mathbf{c}\|_{\infty}$$
 .

1. *p* is integer vector with small angle to *c*

$$2. \|p\|_{\infty} \leqslant Q^n$$



Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : $\mathscr{F} \subseteq 2^{\{0,1\}^n}$ Problem : $\max_{x \in \mathscr{F}} c^T x$

- Optimization problem is polynomial.
- Running time depends on n and binary encoding length of c.

Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : $\mathscr{F} \subseteq 2^{\{0,1\}^n}$ Problem : $\max_{x \in \mathscr{F}} c^T x$

- Optimization problem is polynomial.
- Running time depends on n and binary encoding length of c.

Weakly and strongly polynomial are equivalent for 0/1 problems

With Dirichlet : Replace *c* by a *d* such that

- ▶ $x \in \mathscr{F}$ is optimal w.r.t. *c* if and only if *x* is optimal w.r.t. *d*.
- ► Binary encoding length of *d* is polynomial in the dimension *n*.

(Frank and Tardos 1987)

Round c

Set $\alpha := c/\|c\|_{\infty}$ and Q := nApply Dirichlet and obtain $q \in \mathbb{Z}$ and $p \in \mathbb{Z}^n$

Round c

Set $\alpha := c/\|c\|_{\infty}$ and Q := nApply Dirichlet and obtain $q \in \mathbb{Z}$ and $p \in \mathbb{Z}^n$

Norm of *p* :

Together with $\|\alpha\|_{\infty} = 1$ implies

i) $1 \leq q \leq n^n$ ii) $|q \alpha_i - p_i| < 1/n$

 $\|\mathbf{p}\|_{\infty} \leqslant \mathbf{n}^{\mathbf{n}}.$

Round c

Set $\alpha := c/\|c\|_{\infty}$ and Q := nApply Dirichlet and obtain $q \in \mathbb{Z}$ and $p \in \mathbb{Z}^n$

Norm of *p* :

Together with $\|\alpha\|_{\infty} = 1$ implies

i) $1 \leq q \leq n^n$ ii) $|q \alpha_i - p_i| < 1/n$

 $\|\boldsymbol{p}\|_{\infty}\leqslant \boldsymbol{n}^{\boldsymbol{n}}.$

Polynomial encoding length!

Round c

Set $\alpha := c/\|c\|_{\infty}$ and Q := nApply Dirichlet and obtain $q \in \mathbb{Z}$ and $p \in \mathbb{Z}^n$

Norm of p :

Together with $\|\alpha\|_{\infty} = 1$ implies

i) $1 \leq q \leq n^n$

ii)
$$|q \alpha_i - p_i| < 1/n$$

 $\|\boldsymbol{p}\|_{\infty}\leqslant \boldsymbol{n}^{n}.$

Polynomial encoding length!

How good is p in place of c (or α)?

• $\overline{\mathbf{x}} \in \mathscr{F}$ is optimal solution if and only if $\alpha^T(\overline{\mathbf{x}} - \mathbf{x}) \ge 0$ for all $\mathbf{x} \in \mathscr{F}$.

Round c

Set $\alpha := c/\|c\|_{\infty}$ and Q := nApply Dirichlet and obtain $q \in \mathbb{Z}$ and $p \in \mathbb{Z}^n$

Norm of p :

Together with $\|\alpha\|_{\infty} = 1$ implies

i) $1 \leq q \leq n^n$ ii) $|q \alpha_i - p_i| < 1/n$

```
\|\mathbf{p}\|_{\infty} \leqslant \mathbf{n}^{\mathbf{n}}.
```

Polynomial encoding length!

How good is p in place of c (or α)?

- x̄ ∈ ℱ is optimal solution if and only if α^T(x̄ − x) ≥ 0 for all x ∈ ℱ.
- Optimal solutions w.r.t. α and p are the same if

 $\operatorname{sign}(\boldsymbol{p}^{\mathsf{T}}\boldsymbol{y}) = \operatorname{sign}(\boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{y}) \text{ for all } \boldsymbol{y} \in \{0, \pm 1\}^n$

p is almost as good as α

Claim

 $\forall y \in \{0, \pm 1\}^n$ one has 1. $p^T y > 0 \Longrightarrow c^T y > 0$ 2. $p^T y < 0 \Longrightarrow c^T y < 0$

p is almost as good as α

Claim

 $\forall y \in \{0, \pm 1\}^n \text{ one has}$ $1. \ \rho^T y > 0 \Longrightarrow c^T y > 0$ $2. \ \rho^T y < 0 \Longrightarrow c^T y < 0$

Reminder

i)
$$1 \leq q \leq n^n$$

ii) $|q \alpha_i - p_i| < 1/n$

ρ is almost as good as α

Claim

 $\forall y \in \{0, \pm 1\}^n \text{ one has}$ $1. \ p^T y > 0 \Longrightarrow c^T y > 0$ $2. \ p^T y < 0 \Longrightarrow c^T y < 0$

Reminder i) $1 \leq q \leq n^n$ ii) $|q \alpha_i - p_i| < 1/n$

Proof of claim

Suppose $p^T y > 0$

- $p^T y \ge 1$, since *p* and *y* integral.
- $|\boldsymbol{q}\,\alpha_i-\boldsymbol{p}_i|<1/n$
- Thus $|q \alpha^T y p^T y| = |(q \alpha p)^T y| < n/n = 1.$
- Therefore $\alpha^T y > 0$

p is almost as good as α

Claim

 $\forall y \in \{0, \pm 1\}^n \text{ one has}$ $1. \ p^T y > 0 \Longrightarrow c^T y > 0$ $2. \ p^T y < 0 \Longrightarrow c^T y < 0$

Reminder i) $1 \leq q \leq n^n$ ii) $|q \alpha_i - p_i| < 1/n$

What if $p^T y = 0$? : Apply recursion

► Recursively find $v \in \mathbb{Z}^n$ such that $\forall y \in \{0, \pm 1\}^n$ sign $(v^T y) = sign((q \cdot \alpha - p)^T y).$

$$\forall y \in \{0, \pm 1\}^n$$
: sign $(c^T y)$ = sign $((M \cdot p + v)^T y)$

- Binary encoding length of M · p + v is polynomial even if exponential approximation of shortest vector (LLL) is used.
- Weakly and strongly polynomial are equivalent notions for 0/1 optimization problems. (Frank and Tardos 1987)

Complexity of simultaneous diophantine approximation

Best denominator problem

Given : $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, $\varepsilon > 0$ Find : Minimal $Q \in \mathbb{N}_{\geq 1}$ with

$$|\mathbf{Q} \cdot \alpha_i - \lfloor \mathbf{Q} \cdot \alpha_i \rceil| < \varepsilon$$
 for all $i = 1, \dots, n$.

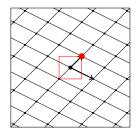
- NP-hard (Lagarias 1985)
- ► Hard to approximate within $2^{n/2}$ unless NP = co NP (Lagarias 1985)
- ► Hard to approximate within 2^n unless P = NP (E. & Rothvoß 2009)

3. New Algorithms for Shortest Vector and Closest Vector

Two classics

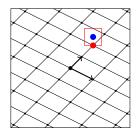
Shortest Vector

Given : Lattice basis $A \in \mathbb{Z}^{n \times n}$. **Task** : Find a shortest nonzero vector in $\Lambda(A)$



Closest Vector

Given : Lattice basis $A \in \mathbb{Z}^{n \times n}$, target vector $t \in \mathbb{Z}^n$. **Task** : Find a vector in Λ closest to t.



History of Shortest Vector

Quest for a singly exponential algorithm

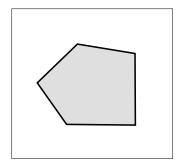
- First algorithms : Lagrange (1775), Gauss (1801), Hermite (1850)
- Lenstra, Lenstra & Lovász (1982) : Polynomial 2ⁿ-approximation algorithm
- ▶ Lenstra (1983) : 2^{O(n³)}- algorithm
- Kannan (1987) : $n^{O(n)}$ -algorithm
- ► Ajtai, Kumar and Sievakumar (2001) : 2^{O(n)}-randomized algorithm for any ℓ_p-norm (Blömer & Naewe 2007)
- Micciancio & Voulgaris (2010) : 2^{O(n)}-deterministic algorithm for *l*₂ only !
- Singly exp. algorithms use $\Omega(2^n)$ -space.

History of closest vector

Quest for a singly exponential algorithm

- Lenstra (1983) : 2^{O(n³)}-algorithm for closest vector and
- Kannan (1987) : n^{O(n)}-algorithm for closest vector and integer programming
- Blömer & Naewe (2007) : (1 + ε)-approx. CVP for all ℓ_p-norms in time O(1/ε)ⁿ (randomized)
- Micciancio & Voulgaris (2010) : 2^{O(n)}-deterministic algorithm for *l*₂ only !
- ► E., Hähnle & Niemeier (2011) : (1 + ε)-approx. CVP for ℓ_∞-norm only in time O(log(1/ε))ⁿ (randomized)

Transference bounds and the $n^{\Omega(n)}$ -barrier

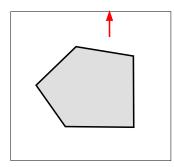


If $K \cap \mathbb{Z}^n = \emptyset$ then there exists $d \in \mathbb{Z}^n - \{0\}$ with

$$\max_{x\in K} d^T x - \min_{x\in K} d^T x = O(n^{3/2})$$

(Banaszczyk 1996)

Transference bounds and the $n^{\Omega(n)}$ -barrier

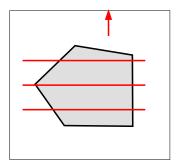


Compute direction $d \in \mathbb{Z}^d - \{0\}$ minimizing

$$\max_{x\in K} d^T x - \min_{x\in K} d^T x$$

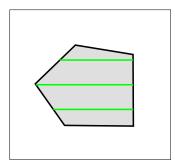
If width too large, then $K \cap \mathbb{Z}^n \neq \emptyset$

Transference bounds and the $n^{\Omega(n)}$ -barrier



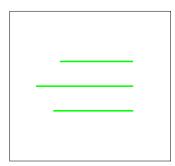
Otherwise search for integer point recursively on one of the $O(n^{3/2}$ hyperplanes $(d^T x = \delta) \cap P, \delta \in \mathbb{Z}$

Transference bounds and the $n^{\Omega(n)}$ -barrier



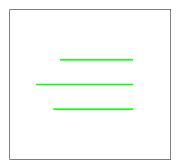
Otherwise search for integer point recursively on one of the $O(n^{3/2}$ hyperplanes $(d^T x = \delta) \cap P, \delta \in \mathbb{Z}$

Transference bounds and the $n^{\Omega(n)}$ -barrier



Otherwise search for integer point recursively on one of the $O(n^{3/2}$ hyperplanes $(d^T x = \delta) \cap P$, $\delta \in \mathbb{Z}$

Transference bounds and the $n^{\Omega(n)}$ -barrier



Otherwise search for integer point recursively on one of the $O(n^{3/2}$ hyperplanes $(d^T x = \delta) \cap P$, $\delta \in \mathbb{Z}$

Analysis

 $T(n) = n^{3/2} \cdot T(n-1) \le (n^{3/2})^n = n^{O(n)}$. (Kannan 1987) Advantage : Polynomial space

4. Detailed Explanation

of the randomized singly exponential algorithm by Ajtai et al. (2001)

Singly Exponential Algorithm for SV

Ajtai, Kumar and Sivakumar (2001)

There exists a randomized $2^{O(n)}$ algorithm for shortest vector.

Simplifying assumption on basis $B = (b_1, \ldots, b_n)$

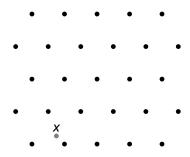
►
$$2 \leq SV(\Lambda) \leq 3$$

Achievable via scaling with powers of 2/3

Promise direction

A promise direction of $x \in \mathbb{R}^n$, prom $(x) \in \mathbb{R}^n$, is vector satisfying

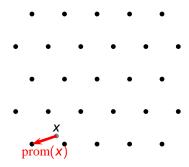
 $x + \operatorname{prom}(x) \in \Lambda$.



Promise direction

A promise direction of $x \in \mathbb{R}^n$, prom $(x) \in \mathbb{R}^n$, is vector satisfying

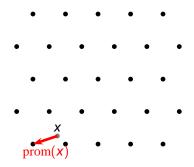
 $x + \operatorname{prom}(x) \in \Lambda$.



Promise direction

A promise direction of $x \in \mathbb{R}^n$, prom $(x) \in \mathbb{R}^n$, is vector satisfying

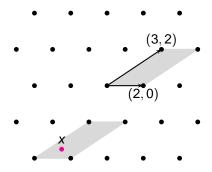
 $\boldsymbol{x} + \operatorname{prom}(\boldsymbol{x}) \in \Lambda$.



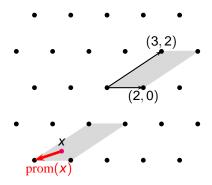
Desired property of promise direction

 $\forall u \in \Lambda, x \in \mathbb{R}^n$: prom(x) = prom(x + u)

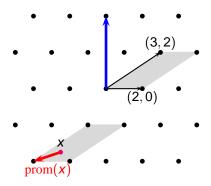
$$\operatorname{prom}(\boldsymbol{x}) := \sum_{i=1}^{n} (\lfloor \lambda_i \rfloor - \lambda_i) \boldsymbol{b}_i.$$



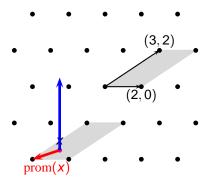
$$\operatorname{prom}(\boldsymbol{x}) := \sum_{i=1}^{n} (\lfloor \lambda_i \rfloor - \lambda_i) \boldsymbol{b}_i.$$



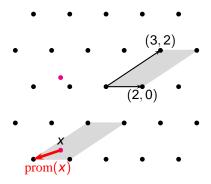
$$\operatorname{prom}(\boldsymbol{x}) := \sum_{i=1}^{n} (\lfloor \lambda_i \rfloor - \lambda_i) \boldsymbol{b}_i.$$



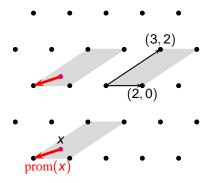
$$\operatorname{prom}(\boldsymbol{x}) := \sum_{i=1}^{n} (\lfloor \lambda_i \rfloor - \lambda_i) \boldsymbol{b}_i.$$



$$\operatorname{prom}(\boldsymbol{x}) := \sum_{i=1}^{n} (\lfloor \lambda_i \rfloor - \lambda_i) \boldsymbol{b}_i.$$



$$\operatorname{prom}(\boldsymbol{x}) := \sum_{i=1}^{n} (\lfloor \lambda_i \rfloor - \lambda_i) \boldsymbol{b}_i.$$



Sampling and Sieving

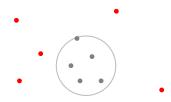
Initialization of Algorithm

Sample exponentially many points $x_1, \ldots, x_N \in B_2(0)$

Sampling and Sieving

Initialization of Algorithm

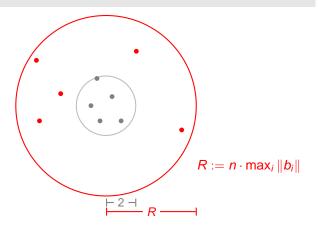
- ▶ Sample exponentially many points $x_1, ..., x_N \in B_2(0)$
- Compute promise directions $prom(x_1), \ldots, prom(x_N)$ and store list $\{(x_1, prom(x_1), \ldots, (x_N, prom(x_N))\}$



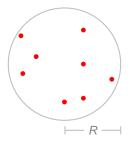
Sampling and Sieving

Initialization of Algorithm

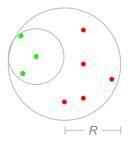
- ▶ Sample exponentially many points $x_1, ..., x_N \in B_2(0)$
- Compute promise directions $prom(x_1), \ldots, prom(x_N)$ and store list $\{(x_1, prom(x_1), \ldots, (x_N, prom(x_N))\}$



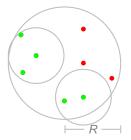
► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red



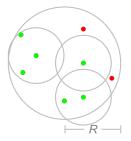
- ► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red
- Pick arbitrary red point and color all points within distance R/2 to this point green



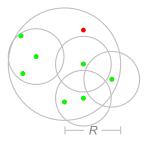
- ► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red
- Pick arbitrary red point and color all points within distance R/2 to this point green
- Repeat until no red points left



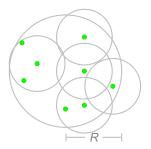
- ► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red
- Pick arbitrary red point and color all points within distance R/2 to this point green
- Repeat until no red points left



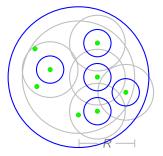
- ► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red
- Pick arbitrary red point and color all points within distance R/2 to this point green
- Repeat until no red points left



- ► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red
- Pick arbitrary red point and color all points within distance R/2 to this point green
- Repeat until no red points left
- How many centers of smaller balls?



- ► Consider promise directions prom(x₁),..., prom(x_N). In the beginning they are red
- Pick arbitrary red point and color all points within distance R/2 to this point green
- Repeat until no red points left
- How many centers of smaller balls?



Number of centers bounded by

$$\frac{\mathrm{vol}(B_{5/4}(0))}{\mathrm{vol}(B_{1/4}(0))} = 5^n$$

The Algorithm

While *R* > 6

- Apply sieving algorithm to the vectors prom(x_i) for each (x_i, prom(x_i)) in list
- Delete from list all tuples (x_i, prom(x_i)), where prom(x_i) is a center of the sieving procedure
- Replace $(x_j, prom(x_j))$ with

 $(x_j, \operatorname{prom}(x_j) - (\operatorname{prom}(x_i) + x_i))$

where $prom(x_i)$ was center of $prom(x_j)$

► *R* ← *R*/2 + 2.

The Algorithm

While *R* > 6

- Apply sieving algorithm to the vectors prom(x_i) for each (x_i, prom(x_i)) in list
- Delete from list all tuples (x_i, prom(x_i)), where prom(x_i) is a center of the sieving procedure
- Replace $(x_j, prom(x_j))$ with

```
(x_j, \operatorname{prom}(x_j) - (\operatorname{prom}(x_i) + x_i))
```

```
where prom(x_i) was center of prom(x_i)
```

```
▶ R \leftarrow R/2 + 2.
```

Output

For each remaining $(x_i, \text{prom}(x_i))$ compute lattice vector $x_i + \text{prom}(x_i)$ and output shortest nonzero one

 $\|\operatorname{prom}(x_i)\| \leq R$

$\begin{aligned} \|\operatorname{prom}_{new}(x_j)\| &= \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i) - x_i\| \\ &\leqslant \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i)\| + \|x_i\| \\ &\leqslant R/2 + 2 = R_{new} \end{aligned}$

$\|\operatorname{prom}(x_j)\| \leq R$

$$\begin{aligned} \|\operatorname{prom}_{new}(x_j)\| &= \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i) - x_i\| \\ &\leqslant \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i)\| + \|x_i\| \\ &\leqslant R/2 + 2 = R_{new} \end{aligned}$$

Number of iterations

Bounded by $O(\log R_0)$ with $R_0 = n \cdot \max_i \|b_i\|$

$\|\operatorname{prom}(x_j)\| \leqslant R$

$$\begin{aligned} \|\operatorname{prom}_{new}(x_j)\| &= \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i) - x_i\| \\ &\leqslant \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i)\| + \|x_i\| \\ &\leqslant R/2 + 2 = R_{new} \end{aligned}$$

Number of iterations

Bounded by $O(\log R_0)$ with $R_0 = n \cdot \max_i \|b_i\|$

Number of deleted tuples

 $O(\log R_0 \cdot 5^n)$

$\|\operatorname{prom}(x_j)\| \leq R$

$$\begin{aligned} |\operatorname{prom}_{new}(x_j)| &= \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i) - x_i\| \\ &\leqslant \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i)\| + \|x_i\| \\ &\leqslant R/2 + 2 = R_{new} \end{aligned}$$

Number of iterations

Bounded by $O(\log R_0)$ with $R_0 = n \cdot \max_i ||b_i||$

Number of deleted tuples

 $O(\log R_0 \cdot 5^n)$

Length of generated lattice points

 $||x_i + \text{prom}(x_i)|| \le 2 + 6 = 8$. Short!

$\|\operatorname{prom}(x_j)\| \leqslant R$

$$\begin{aligned} \|\operatorname{prom}_{new}(x_j)\| &= \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i) - x_i\| \\ &\leqslant \|\operatorname{prom}(x_j) - \operatorname{prom}(x_i)\| + \|x_i\| \\ &\leqslant R/2 + 2 = R_{new} \end{aligned}$$

Number of iterations

Bounded by $O(\log R_0)$ with $R_0 = n \cdot \max_i \|b_i\|$

Number of deleted tuples

 $O(\log R_0 \cdot 5^n)$

Zero is short

How can one guarantee that not all $x_j + prom(x_j)$ are zero?

► Consider tuple (x_i, prom(x_i)) before the output phase of the algorithm.

- Consider tuple (x_i, prom(x_i)) before the output phase of the algorithm.
- ► Alg. never queried *x_i* itself.

- Consider tuple (x_i, prom(x_i)) before the output phase of the algorithm.
- ► Alg. never queried x_i itself.
- Alg. queried $prom(x_i)$ instead.

- ► Consider tuple (x_i, prom(x_i)) before the output phase of the algorithm.
- ► Alg. never queried x_i itself.
- Alg. queried $prom(x_i)$ instead.
- Alg. would behave just the same until this point if x_i was replaced by

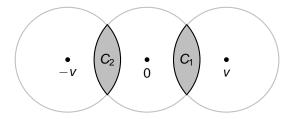
 $x_i + v$ for any $v \in \Lambda(B)$,

after initialization Step.

Gedankenexperiment

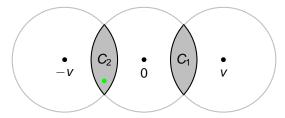
Sets C_1 and C_2

- Let $v \in \Lambda(B)$ be shortest vector ($2 \leq ||v|| \leq 3$)
- $C_1 := B_2(0) \cap B_2(v); C_2 = B_2(0) \cap B_2(-v).$



Sets C_1 and C_2

- Let $v \in \Lambda(B)$ be shortest vector ($2 \leq ||v|| \leq 3$)
- $C_1 := B_2(0) \cap B_2(v); C_2 = B_2(0) \cap B_2(-v).$

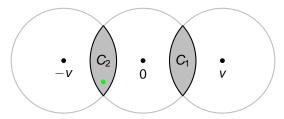


Toss coin

▶ If $x_i \in C_1 \cup C_2$ and tuple $(x_i, prom(x_i))$ has survived

Sets C_1 and C_2

- Let $v \in \Lambda(B)$ be shortest vector ($2 \leq ||v|| \leq 3$)
- $C_1 := B_2(0) \cap B_2(v); C_2 = B_2(0) \cap B_2(-v).$

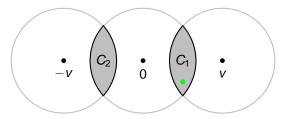


Toss coin

- ▶ If $x_i \in C_1 \cup C_2$ and tuple $(x_i, prom(x_i))$ has survived
- If coin shows head, flip x_i to other side

Sets C_1 and C_2

- Let $v \in \Lambda(B)$ be shortest vector ($2 \leq ||v|| \leq 3$)
- $C_1 := B_2(0) \cap B_2(v); C_2 = B_2(0) \cap B_2(-v).$

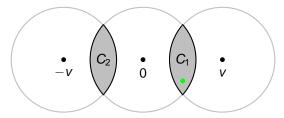


Toss coin

- ▶ If $x_i \in C_1 \cup C_2$ and tuple $(x_i, prom(x_i))$ has survived
- If coin shows head, flip x_i to other side

Sets C_1 and C_2

- Let $v \in \Lambda(B)$ be shortest vector ($2 \leq ||v|| \leq 3$)
- $C_1 := B_2(0) \cap B_2(v); C_2 = B_2(0) \cap B_2(-v).$



Toss coin

- ▶ If $x_i \in C_1 \cup C_2$ and tuple $(x_i, prom(x_i))$ has survived
- If coin shows head, flip x_i to other side
- Prob. of $x_i + \operatorname{prom}(x_i) = 0$ is $\leq 1/2$

Many sampled points will be in $C_1 \cup C_2$

Volume of C₁ and C₂

$$\operatorname{vol}(C_1)/\operatorname{vol}(B_2(0)) = \operatorname{vol}(C_2)/\operatorname{vol}(B_2(0)) \geqslant 2^{-2n}$$

Sample size

If number of sampled points is $\Omega(\log(R_0) \cdot 5^{2n})$ then many points will survive in $C_1 \cup C_2$ and short nonzero vector is computed whp.

Many sampled points will be in $C_1 \cup C_2$

Volume of C₁ and C₂

$$\operatorname{vol}(C_1)/\operatorname{vol}(B_2(0)) = \operatorname{vol}(C_2)/\operatorname{vol}(B_2(0)) \geqslant 2^{-2n}$$

Sample size

If number of sampled points is $\Omega(\log(R_0) \cdot 5^{2n})$ then many points will survive in $C_1 \cup C_2$ and short nonzero vector is computed whp.

Theorem (Ajtai, Kumar and Sivakumar (2001))

There exists a simply exponential randomized algorithm for shortest vector.

Extensions

More recent results

- ► Blömer & Naewe (2007, 2009) generalize to arbitrary ℓ_p-norm Derandomization : (Dadush, Peikert & Vempala 2011)
- Blömer & Naewe (2007, 2009) also provide (1 + ε)-approximation alg. for CVP for any ℓ_p-norm. Running time O(1/ε)ⁿ
- E., Hähnle & Niemeier (2011) : (1 + ε)-approximation alg. for CVP for ℓ_∞-norm. Running time O log(1/ε)ⁿ

Faster approximation alg. for CVP_∞

Why CVP_{∞} is particularly interesting

- ► Integer programming : Decide whether $P = \{x \in \mathbb{R}^n : Ax \leq u\}$ contains integer point
- ▶ Reduce to IP-feasibility of $I \leq Ax \leq u$ (standard technique)
- ▶ Rescale : *u* − *l* = 1
- ► Define $t := \frac{l+u}{2}$: *P* contains integer point iff there exists $v \in \Lambda(A)$ with $||v t||_{\infty} \leq \frac{1}{2}$

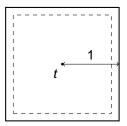
 $(1 + \varepsilon)$ -approximate CVP $_{\infty}$

Given : Λ and tConsider cubes

> $B := \{ x \in \mathbb{R}^n : \| x - t \|_{\infty} \leq 1 \}$ $B' := \{ x \in \mathbb{R}^n : \| x - t \|_{\infty} \leq (1 - \varepsilon) \}$

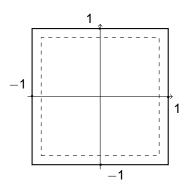
Task :

- Either : Find $v \in \Lambda \cap B$
- Or : Assert $\Lambda \cap B' = \emptyset$.



Boosting a 2-approximation algorithm

- Consider the unit hypercube $H := \{x \in \mathbb{R}^n : \|x\|_{\infty} \leq 1\},\$
- ▶ and a scaled cube $H' := \{ x \in \mathbb{R}^n : \|x\|_{\infty} \leq 1 \varepsilon \}.$

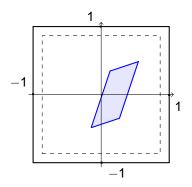


Question

How many parallelepipeds, if scaled by 2 from their centers of gravity are contained in H, are needed to cover H'?

Boosting a 2-approximation algorithm

- Consider the unit hypercube $H := \{x \in \mathbb{R}^n : \|x\|_{\infty} \leq 1\},\$
- ▶ and a scaled cube $H' := \{x \in \mathbb{R}^n : \|x\|_{\infty} \leq 1 \varepsilon\}.$

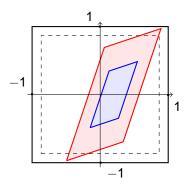


Question

How many parallelepipeds, if scaled by 2 from their centers of gravity are contained in H, are needed to cover H'?

Boosting a 2-approximation algorithm

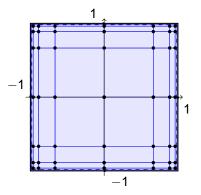
- Consider the unit hypercube $H := \{x \in \mathbb{R}^n : \|x\|_{\infty} \leq 1\},\$
- ▶ and a scaled cube $H' := \{x \in \mathbb{R}^n : \|x\|_{\infty} \leq 1 \varepsilon\}.$



Question

How many parallelepipeds, if scaled by 2 from their centers of gravity are contained in H, are needed to cover H'?

An $O(\log(1/\varepsilon))^n$ -algorithm



Number of parallelepipeds

At most $2^n (\log 1/\varepsilon)^n$

Theorem (E., Hähnle & Niemeier 2011)

There is a randomized algorithm to solve $(1 + \varepsilon)$ -gap CVP in time $(\log 1/\varepsilon)^n$.

Future Challenge

Open Problem

Is there a simply exponential time and polynomial space alg. for SV, CVP and integer programming ?