Algorithmic Geometry of Numbers

New and old algorithms and open problems around shortest and
closest lattice vectors

EuroCG, March 29, 2011

Friedrich Eisenbrand
EPFL



1. Geometry of Numbers



Lattices

Lattice
A(A) = {Ax: x € Z"}, where A € R™*" is nonsingular matrix

A Central Problem : Shortest Vector
Given basis A, find shortest nonzero vector of A(A).




Lattices

Lattice
A(A) = {Ax: x € Z"}, where A € R™*" is nonsingular matrix

A Central Problem : Shortest Vector
Given basis A, find shortest nonzero vector of A(A).




Minkowski’'s theorem

Existence of short vectors

Let K C R" be convex body which is symmetric around origin (x € K
implies —x € K).

If vol(K) > 2", then K contains v € Z" \ {0}.



Minkowski’'s theorem

Existence of short vectors

Let K C R" be convex body which is symmetric around origin (x € K
implies —x € K).

If vol(K) > 2", then K contains v € Z" \ {0}.



Proof

To show : If K N Z = {0}, then vol(K) < 2".



Proof

Translates (1/2) -K + v, v € Z", ||V]s < M cannot intersect!

(1/2)ks +v1 = (1/2)ka + Vv, implies 0 # vy — v, = (1/2)k, — (1/2)ky € K.



Proof




Proof

ol(K)/2" < 1.

umbers — 1 and thus v



Lattice determinant

Determinant of A
A basis of A, then | det(A)| is invariant of A called lattice determinant

(] L] L] o ﬁ’ 2) L] (] L] L] Flv 2) L] L
L] [ ] (2, 0) L] [ ] [ ] (2, 0) L]



Minkowski’s convex body theorem (V 2.0)

Let A C R" be a lattice and K C R" be a convex body of volume
vol(K) > 2" det(A) that is symmetric about the origin. K contains
nonzero lattice point.

Existence of short vectors
A has nonzero lattice point v with ||V | < /det(A)

(070)

vol = 2" det(A)

— /det(A) —



Minkowski’s convex body theorem (V 2.0)

Let A C R" be a lattice and K C R" be a convex body of volume
vol(K) > 2" det(A) that is symmetric about the origin. K contains
nonzero lattice point.

Existence of short vectors
A has nonzero lattice point v with ||V | < /det(A)

(070)

vol = 2" det(A)

— /det(A) —



2. Application : Diophantine
Approximation



Rounding a vector

[EnY
o
o

Theorem (Dirichlet)

.. a(l)
Given: ag,...,an € Rand Q € N 0 1 -~ 0 a2
There exist: g e Nand py,...,.pn € Z
with
0 0 1 )
1<q<Q" and |ga; —pi| <1/Q. 0 0 0 1/Q™

"/det(A) = 1/Q



Rounding a vector

. 1 0 -~ 0 o)
Given: ag,...,an € Rand Q € N 0 1 -~ 0 a2
There exist: g e Nand py,...,.pn € Z
with

0 0 1 «an)

1<q<Q" and |gai —pi| <1/Q. 0 0 - 0 1/Q"*

"/det(A) = 1/Q



Rounding a vector

Theorem (Dirichlet) P1 P2 Pn q
: 1 0 0 o1)
Given: ag,...,ap € Rand Q e N 0o 1 0 o(2)
There exist: g e Nand py,...,.pn € Z _
with .
0 0 -~ 1 «n)
0 0 --- 0 1/Q"!

1<qg<Q" and |goi —pi| <1/Q.

"/det(A) = 1/Q

Rounding ¢ € Z"
Set o :=¢/||C||oo - p

1. pis integer vector with
small angle to ¢

2. Iplle < Q" @



Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : .Z C 2{0.1}"
Problem : maxyc & c"x

» Optimization problem is polynomial.
» Running time depends on n and binary encoding length of c.

10



Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : . C 2{0:1}"
Problem : max,cs c'x
» Optimization problem is polynomial.
» Running time depends on n and binary encoding length of c.

Weakly and strongly polynomial are equivalent for 0/1 problems

With Dirichlet : Replace ¢ by a d such that
> X € .7 is optimal w.r.t. ¢ if and only if x is optimal w.r.t. d.
» Binary encoding length of d is polynomial in the dimension n.
(Frank and Tardos 1987)

10



Some more detailed explanations

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"

11



Some more detailed explanations

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"

Norm of p :
Together with |||/ = 1 implies
Dl<ggn”
. o [Pl <"
i) [ga; —pi| <1/n

11



Some more detailed explanations

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"

Norm of p :
Together with |||/ = 1 implies
Dl<ggn”
. o [Pl <"
i) [ga; —pi| <1/n

Polynomial encoding length!

11



Some more detailed explanations

Round ¢

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"

Norm of p :
Together with |||/ = 1 implies
Dl<ggn”
. o Ipllec < 0"
i) [ga; —pi| <1/n

Polynomial encoding length!

How good is p in place of c (or «)?

» X € .7 is optimal solution if and only if o (X — x) > 0 for all
X e.Z.

11



Some more detailed explanations

Round ¢

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"

Norm of p :
Together with |||/ = 1 implies
Dl<ggn”
. o Ipllec < 0"
i) [ga; —pi| <1/n

Polynomial encoding length!

How good is p in place of c (or «)?

» X € .7 is optimal solution if and only if o (X — x) > 0 for all
X e Z.
» Optimal solutions w.r.t. « and p are the same if

sgn(p'y) =sign(a'y) forall y e {0,£1}"

11



p is almost as good as  «
vy € {0,£1}" one has
1. p'y>0=1c"y >0
2.p'ly<0=1c¢c"y<0

12



p is almost as good as  «
vy € {0,£1}" one has
1. p'y>0=1c"y >0
2.p'ly<0=1c¢c"y<0

Reminder
)l<ggn”
ii) |qai = pi| < 1/n

12



p is almost as good as  «

Reminder

vy € {0,£1}" one has H)l<ggn”
1. p'ly>0=1¢c"y >0 i) [gai —pil <1/n
2.ply<0=1cTy <0

Proof of claim
Suppose p'y >0
» p'y > 1, since p and y integral.
> |gai —pil <1/n
> Thus [ga’y —pTy[=[(qa—p)Ty| <n/n=1.
» Therefore o'y >0

12



p is almost as good as  «

Reminder

vy € {0,£1}" one has )l1<g<n”
1. p'y>0=1c"y >0 i) |qai —pil <1/n
2.p'ly<0=1c¢c"y<0

What if p Ty = 0? : Apply recursion

» Recursively find v € Z" such that vy € {0, £1}"
sign(vTy) = sign((q - — p)Ty).
» Let M be a large weight, then

vy € {0,£1}": sign(cTy) =sign((M -p+Vv)Ty)

» Binary encoding length of M - p + v is polynomial even if
exponential approximation of shortest vector (LLL) is used.

» Weakly and strongly polynomial are equivalent notions for 0/1
optimization problems. (Frank and Tardos 1987)

12



Complexity of simultaneous diophantine approximation

Best denominator problem

Given: ag,...,an €R,e >0
Find : Minimal Q € N3, with

Q-0 — Q- qi]| <eforalli=1,...,n.

» NP-hard (Lagarias 1985)

» Hard to approximate within 2"/2 unless NP = co — NP (Lagarias
1985)

» Hard to approximate within 2" unless P = NP (E. & Rothvol3
2009)

13



3. New Algorithms for Shortest Vector
and Closest Vector



Two classics

Shortest Vector

Given : Lattice basis A € Z"*",
Task : Find a shortest nonzero vector
in A(A)

Closest Vector
Given : Lattice basis A € Z"<", target

vector t € Z".
Task : Find a vector in A closest to t.

15



History of Shortest Vector

Quest for a singly exponential algorithm

| 4

First algorithms : Lagrange (1775), Gauss (1801), Hermite
(1850)

Lenstra, Lenstra & Lovasz (1982) : Polynomial 2"-approximation
algorithm

Lenstra (1983) : 2°(")- algorithm

» Kannan (1987) : n®M-algorithm

Ajtai, Kumar and Sievakumar (2001) : 2°("-randomized
algorithm for any ¢p-norm (Blomer & Naewe 2007)

Micciancio & Voulgaris (2010) : 2°("-deterministic algorithm for
Z5 only!
Singly exp. algorithms use Q(2")-space.

16



History of closest vector

Quest for a singly exponential algorithm

» Lenstra (1983) : 2°(™)-algorithm for closest vector and

» Kannan (1987) : n®(M-algorithm for closest vector and integer
programming

» Blomer & Naewe (2007) : (1 + ¢)-approx. CVP for all £,-norms in
time O(1/e)" (randomized)

» Micciancio & Voulgaris (2010) : 2°(")-deterministic algorithm for
4, only!

» E., Hahnle & Niemeier (2011) : (1 + ¢)-approx. CVP for /..-norm
only in time O(log(1/¢))" (randomized)

17



Transference bounds and the  n®(M-bparrier

If KNZ" = 0 then there existsd € Z" —
{0} with

maxd'x —mindTx = O(n%?)
xeK xeK

(Banaszczyk 1996)

18



Transference bounds and the  n®(M-bparrier

Compute direction d € Z¢ — {0} mini-
mizing

maxd’™x — mind " x
XeK xeK

If width too large, then K N Z" # ()

18



Transference bounds and the  n®(M-bparrier

cursively on one of the O(n%/2 hyper-
planes (d"x =38) NP, 6 € Z

/\
/ Otherwise search for integer point re-

18



Transference bounds and the  n®(M-bparrier

Otherwise search for integer point re-

\ cursively on one of the O(n%/2 hyper-

planes (d"x =38) NP, 6 € Z

18



Transference bounds and the  n®(M-bparrier

Otherwise search for integer point re-
cursively on one of the O(n%/2 hyper-
planes (d"x =38) NP, 6 € Z

18



Transference bounds and the  n®(M-bparrier

Otherwise search for integer point re-
cursively on one of the O(n%/2 hyper-
planes (d"x =38) NP, 6 € Z

T(n)=n%2.T(n-1) < (n¥2)" =n°M, (Kannan 1987)
Advantage : Polynomial space

18



4. Detailed Explanation

of the randomized singly exponential algorithm by Ajtai et al. (2001)

19



Singly Exponential Algorithm for SV

Ajtai, Kumar and Sivakumar (2001)

There exists a randomized 2°(" algorithm for shortest vector.

Simplifying assumption on basis B = (b

» 2<SV(A) <3
» Achievable via scaling with powers of 2/3

20



Promise direction

A promise direction of x € R", prom(x) € R", is vector satisfying

X + prom(x) € A.

21



Promise direction

A promise direction of x € R", prom(x) € R", is vector satisfying

X + prom(x) € A.

21



Promise direction
A promise direction of x € R", prom(x) € R", is vector satisfying

X + prom(x) € A.

Desired property of promise direction

Yu € A, x € R": prom(x) = prom(x + u)

21



Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1

22



Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1

22



Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1

. . ° . (3,2) °
° ° 2%0) °
X
o/ ° ° °

22



Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1

22



Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1

22



Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1

° ° ° ° (3,2) °
/ ° (2, 0) °
X
o/ . ° °

22



Sampling and Sieving
Initialization of Algorithm

» Sample exponentially many points Xy, ..., Xy € B,(0)

F24

23



Sampling and Sieving

Initialization of Algorithm

» Sample exponentially many points Xy, ..., Xy € B,(0)
» Compute promise directions prom(xy), ..., prom(xy) and store list
{(Xl» prom(xl)» °oog (XN 3 prom(XN )}
]
[ ]
L J
. °

F24

23



Sampling and Sieving

Initialization of Algorithm

» Sample exponentially many points Xy, ..., Xy € B,(0)
» Compute promise directions prom(xy), ..., prom(xy) and store list
{(Xl» prom(xl)» °oog (XN 3 prom(XN )}

R :=n-max; ||bi||

-2
——R—

23



» Consider promise directions prom(xy), . . ., prom(xy). In the
beginning they are red

24



» Consider promise directions prom(xy), . . ., prom(xy). In the

beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point green

24



» Consider promise directions prom(xy), . . ., prom(xy). In the
beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point green

» Repeat until no red points left

24



» Consider promise directions prom(xy), . . ., prom(xy). In the
beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point green

» Repeat until no red points left

24



» Consider promise directions prom(xy), . . ., prom(xy). In the
beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point green

» Repeat until no red points left

24



» Consider promise directions prom(xy), . . ., prom(xy). In the

beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point green

» Repeat until no red points left
» How many centers of smaller balls ?

24



» Consider promise directions prom(xy), . . ., prom(xy). In the

beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point

» Repeat until no red points left
» How many centers of smaller balls ?

vol(Bs/4(0))

vol(B1,4(0)) =5

24



The Algorithm

While R > 6

» Apply sieving algorithm to the vectors prom(x;) for each
(xi, prom(x;)) in list

» Delete from list all tuples (x;, prom(x;)),
where prom(x;) is a center of the sieving procedure

» Replace (x;, prom(x;)) with

(Xj, prom(x;) — (prom(x;) + X;)

where prom(x;) was center of prom(x;)
» R+ R/2+2.

25



The Algorithm

While R > 6

» Apply sieving algorithm to the vectors prom(x;) for each
(xi, prom(x;)) in list

» Delete from list all tuples (x;, prom(x;)),
where prom(x;) is a center of the sieving procedure

» Replace (x;, prom(x;)) with

(Xj, prom(x;) — (prom(x;) + X;)

where prom(x;) was center of prom(x;)
» R+ R/2+2.

For each remaining (x;, prom(x;)) compute lattice vector x; + prom(x;)
and output shortest nonzero one

25



Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
[lprom(x;) — prom(x;)|| + [|xi]
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

VAN/AN

26



Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
[lprom(x;) — prom(x;)|| + [|xi]
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

VAN/AN

Number of iterations

Bounded by O(log Rg) with Rp = n - max; ||b;||

26



Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
[lprom(x;) — prom(x;)|| + [|xi]
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

VAN/AN

Number of iterations

Bounded by O(log Rg) with Rp = n - max; ||b;||

Number of deleted tuples

O(logRg - 5")

26



Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
lIprom(x; ) — prom(x;)|[ + [|xi
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

N IN

Number of iterations
Bounded by O(log Ro) with Rg = n - max; ||b;||

Number of deleted tuples
O(logRg - 5")

Length of generated lattice points

[Ixi + prom(x;)|| < 2+ 6 = 8. Short!

26



Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
[lprom(x;) — prom(x;)|| + [|xi]
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

VAN/AN

Number of iterations
Bounded by O(log Rg) with Rp = n - max; ||b;||

Number of deleted tuples

O(logRg - 5")

How can one guarantee that not all x; + prom(x;) are zero ?

26



A crucial observation

» Consider tuple (x;, prom(x;)) before the output phase of the
algorithm.

27



A crucial observation

» Consider tuple (x;, prom(x;)) before the output phase of the
algorithm.

» Alg. never queried ¥; itself.

27



A crucial observation

» Consider tuple (x;, prom(x;)) before the output phase of the
algorithm.

» Alg. never queried ¥; itself.

» Alg. queried prom(x;) instead.

27



A crucial observation

» Consider tuple (x;, prom(x;)) before the output phase of the
algorithm.
» Alg. never queried ¥; itself.
» Alg. queried prom(x;) instead.
» Alg. would behave just the same until this point if x; was replaced
b
’ xi + Vv forany v € A(B),

after initialization Step.

27



Gedankenexperiment

Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = Bz(O) N Bz(V); C, = Bz(O) n Bz(—V).

28



Gedankenexperiment
Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = Bz(O) N Bz(V); C, = Bz(O) n Bz(—V).

Toss coin

» If x; € C; UC; and tuple (x;, prom(x;)) has survived

28



Gedankenexperiment
Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = Bz(O) N Bz(V); C, = Bz(O) n Bz(—V).

Toss coin

» If x; € C; UC; and tuple (x;, prom(x;)) has survived
» If coin shows head, flip x; to other side

28



Gedankenexperiment
Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = Bz(O) N Bz(V); C, = Bz(O) n Bz(—V).

Toss coin

» If x; € C; UC; and tuple (x;, prom(x;)) has survived
» If coin shows head, flip x; to other side

28



Gedankenexperiment
Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = BQ(O) N Bz(V); C, = Bz(O) n Bz(—V).

Toss coin

» If x; € C; UC; and tuple (x;, prom(x;)) has survived
» If coin shows head, flip x; to other side
» Prob. of x; + prom(x;) = 0is < 1/2

28



Many sampled points willbe in  C; UC,

Volume of C; and C,

vol(Cy)/vol (B2(0)) = vol(C5)/vol(B(0)) = 2-2"

Sample size

If number of sampled points is Q(log(Ry) - 5°") then many points will
survive in C; U C, and short nonzero vector is computed whp.

29



Many sampled points willbe in  C; UC,

Volume of C; and C,
vol(Cy)/vol(B2(0)) = vol(C,)/vol(B,(0)) > 2-2"

Sample size

If number of sampled points is Q(log(Ry) - 5°") then many points will
survive in C; U C, and short nonzero vector is computed whp.

Theorem (Ajtai, Kumar and Sivakumar (2001))

There exists a simply exponential randomized algorithm for shortest
vector.

29



Extensions

More recent results

» Blomer & Naewe (2007, 2009) generalize to arbitrary £y-norm
Derandomization : (Dadush, Peikert & Vempala 2011)

» Blémer & Naewe (2007, 2009) also provide (1 + ¢)-approximation
alg. for CVP for any /,-norm. Running time O(1/e)"

» E., Hahnle & Niemeier (2011) : (1 + ¢)-approximation alg. for
CVP for £-.-norm. Running time O log(1/¢)"

30



Faster approximation alg. for CVP

Why CVP is particularly interesting

» Integer programming : Decide whether P = {x e R" : Ax < u}
contains integer point

» Reduce to IP-feasibility of | < Ax < u (standard technique)

» Rescale:u—I1=1

» Define t := 5% : P contains integer point iff there exists v € A(A)
with v —t|| < 3

31



(1 + )-approximate CVP

Given : Aand t

Consider cubes - __C
> Bi={xeR": [x—t], <1}
» B i={xeR": |x—-t]| < (1-¢)}

Task :

» Either: Findv e ANB
» Or:AssertANB' =¢0. |t ---------




Boosting a 2-approximation algorithm

» Consider the unit hypercube H := {x e R" : ||x|| <1},
» and a scaled cube H := {x e R" : |x||, <1—¢}.

,,,,,,,,,,,,,,,

How many parallelepipeds, if scaled by 2 from their centers of gravity
are contained in H, are needed to cover H' ?

33



Boosting a 2-approximation algorithm

» Consider the unit hypercube H := {x e R" : ||x|| <1},
» and a scaled cube H := {x e R" : |x||, <1—¢}.

,,,,,,,,,,,,,,,

How many parallelepipeds, if scaled by 2 from their centers of gravity
are contained in H, are needed to cover H' ?

33



Boosting a 2-approximation algorithm

» Consider the unit hypercube H := {x e R" : ||x|| <1},
» and a scaled cube H := {x e R" : |x||, <1—¢}.

Question

How many parallelepipeds, if scaled by 2 from their centers of gravity
are contained in H, are needed to cover H' ?

33



An O(log(1/¢))"-algorithm

-1

Number of parallelepipeds

At most 2"(log 1/¢)"

Theorem (E., Hahnle & Niemeier 2011)

There is a randomized algorithm to solve (1 + ¢)-gap CVP in time
(log1/e).

34



Future Challenge

» Is there a simply exponential time and polynomial space alg. for
SV, CVP and integer programming ?

35



