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1. Geometry of Numbers
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Lattices
Lattice

Λ(A) = {Ax : x ∈ Z
n}, where A ∈ R

n×n is nonsingular matrix
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A Central Problem : Shortest Vector

Given basis A, find shortest nonzero vector of Λ(A).

3



Lattices
Lattice

Λ(A) = {Ax : x ∈ Z
n}, where A ∈ R

n×n is nonsingular matrix

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(2, 0)

(3, 2)

A Central Problem : Shortest Vector

Given basis A, find shortest nonzero vector of Λ(A).

3



Minkowski’s theorem
Existence of short vectors

Let K ⊆ R
n be convex body which is symmetric around origin (x ∈ K

implies −x ∈ K ).

If vol(K ) > 2n, then K contains v ∈ Z
n \ {0}.

b

(0, 0)
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Proof
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To show : If K ∩ Z = {0}, then vol(K ) 6 2n.
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Translates (1/2) · K + v , v ∈ Z
n, ‖v‖∞ 6 M cannot intersect !

(1/2)k1 + v1 = (1/2)k2 + v2 implies 0 6= v1 − v2 = (1/2)k2 − (1/2)k1 ∈ K .
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Union of translates : vol = (2 ·M + 1)n · vol(K )/2n.
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Outer box : vol = (2M + 2r)n .
As M →∞, ratio of blue numbers→ 1 and thus vol(K )/2n 6 1.
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Lattice determinant

Determinant of Λ

A basis of Λ, then | det(A)| is invariant of Λ called lattice determinant
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Minkowski’s convex body theorem (V 2.0)

Let Λ ⊆ R
n be a lattice and K ⊆ R

n be a convex body of volume
vol(K ) > 2n det(Λ) that is symmetric about the origin. K contains
nonzero lattice point.

Existence of short vectors

Λ has nonzero lattice point v with ‖v‖∞ 6 n
√

det(Λ)

b

(0, 0)

vol = 2n det(Λ)

n
√

det(Λ)
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2. Application : Diophantine
Approximation
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Rounding a vector

Theorem (Dirichlet)

Given : α1, . . . , αn ∈ R and Q ∈ N

There exist : q ∈ N and p1, . . . , pn ∈ Z

with

1 6 q 6 Qn and |q αi − pi | < 1/Q.



















1 0 · · · 0 α(1)
0 1 · · · 0 α(2)

. . .
0 0 · · · 1 α(n)
0 0 · · · 0 1/Qn+1



















n+1
√

det(Λ) = 1/Q
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




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






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
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
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√

det(Λ) = 1/Q

Rounding c ∈ Z
n

Set α := c/‖c‖∞ .

1. p is integer vector with
small angle to c

2. ‖p‖∞ 6 Qn α

p
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Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : F ⊆ 2{0,1}n

Problem : maxx∈F cT x

◮ Optimization problem is polynomial.
◮ Running time depends on n and binary encoding length of c.
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Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : F ⊆ 2{0,1}n

Problem : maxx∈F cT x

◮ Optimization problem is polynomial.
◮ Running time depends on n and binary encoding length of c.

Weakly and strongly polynomial are equivalent for 0/1 problems

With Dirichlet : Replace c by a d such that
◮ x ∈ F is optimal w.r.t. c if and only if x is optimal w.r.t. d .
◮ Binary encoding length of d is polynomial in the dimension n.

(Frank and Tardos 1987)
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Some more detailed explanations
Round c

Set α := c/‖c‖∞ and Q := n
Apply Dirichlet and obtain q ∈ Z and p ∈ Z

n
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Some more detailed explanations
Round c

Set α := c/‖c‖∞ and Q := n
Apply Dirichlet and obtain q ∈ Z and p ∈ Z

n

Norm of p :

i) 1 6 q 6 nn

ii) |q αi − pi | < 1/n

Together with ‖α‖∞ = 1 implies

‖p‖∞ 6 nn.

Polynomial encoding length !

How good is p in place of c (or α) ?

◮ x ∈ F is optimal solution if and only if αT (x − x) > 0 for all
x ∈ F .

◮ Optimal solutions w.r.t. α and p are the same if

sign(pT y) = sign(αT y) for all y ∈ {0,±1}n
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p is almost as good as α

Claim

∀y ∈ {0,±1}n one has

1. pT y > 0 =⇒ cT y > 0

2. pT y < 0 =⇒ cT y < 0
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p is almost as good as α

Claim

∀y ∈ {0,±1}n one has

1. pT y > 0 =⇒ cT y > 0

2. pT y < 0 =⇒ cT y < 0

Reminder

i) 1 6 q 6 nn

ii) |q αi − pi | < 1/n

Proof of claim

Suppose pT y > 0
◮ pT y > 1, since p and y integral.
◮ |q αi − pi | < 1/n
◮ Thus |q αT y − pT y | = |(q α− p)T y | < n/n = 1.
◮ Therefore αT y > 0
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p is almost as good as α

Claim

∀y ∈ {0,±1}n one has

1. pT y > 0 =⇒ cT y > 0

2. pT y < 0 =⇒ cT y < 0

Reminder

i) 1 6 q 6 nn

ii) |q αi − pi | < 1/n

What if p Ty = 0 ? : Apply recursion

◮ Recursively find v ∈ Z
n such that ∀y ∈ {0,±1}n

sign(vT y) = sign((q · α− p)T y).
◮ Let M be a large weight, then

∀y ∈ {0,±1}n : sign(cT y) = sign
(

(M · p + v)T y
)

◮ Binary encoding length of M · p + v is polynomial even if
exponential approximation of shortest vector (LLL) is used.

◮ Weakly and strongly polynomial are equivalent notions for 0/1
optimization problems. (Frank and Tardos 1987)

12



Complexity of simultaneous diophantine approximation

Best denominator problem

Given : α1, . . . , αn ∈ R, ε > 0
Find : Minimal Q ∈ N>1 with

|Q · αi − ⌊Q · αi⌉| < ε for all i = 1, . . . , n.

◮ NP-hard (Lagarias 1985)
◮ Hard to approximate within 2n/2 unless NP = co− NP (Lagarias

1985)
◮ Hard to approximate within 2n unless P = NP (E. & Rothvoß

2009)
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3. New Algorithms for Shortest Vector
and Closest Vector

14



Two classics

Shortest Vector

Given : Lattice basis A ∈ Z
n×n.

Task : Find a shortest nonzero vector
in Λ(A)

Closest Vector

Given : Lattice basis A ∈ Z
n×n, target

vector t ∈ Z
n.

Task : Find a vector in Λ closest to t .
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History of Shortest Vector

Quest for a singly exponential algorithm

◮ First algorithms : Lagrange (1775), Gauss (1801), Hermite
(1850)

◮ Lenstra, Lenstra & Lovász (1982) : Polynomial 2n-approximation
algorithm

◮ Lenstra (1983) : 2O(n3)- algorithm
◮ Kannan (1987) : nO(n)-algorithm
◮ Ajtai, Kumar and Sievakumar (2001) : 2O(n)-randomized

algorithm for any ℓp-norm (Blömer & Naewe 2007)

◮ Micciancio & Voulgaris (2010) : 2O(n)-deterministic algorithm for
ℓ2 only !

◮ Singly exp. algorithms use Ω(2n)-space.
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History of closest vector

Quest for a singly exponential algorithm

◮ Lenstra (1983) : 2O(n3)-algorithm for closest vector and
◮ Kannan (1987) : nO(n)-algorithm for closest vector and integer

programming
◮ Blömer & Naewe (2007) : (1 + ε)-approx. CVP for all ℓp-norms in

time O(1/ε)n (randomized)
◮ Micciancio & Voulgaris (2010) : 2O(n)-deterministic algorithm for

ℓ2 only !
◮ E., Hähnle & Niemeier (2011) : (1 + ε)-approx. CVP for ℓ∞-norm

only in time O(log(1/ε))n (randomized)
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Transference bounds and the nΩ(n)-barrier

If K ∩Zn = ∅ then there exists d ∈ Z
n−

{0} with

max
x∈K

dT x −min
x∈K

dT x = O(n3/2)

(Banaszczyk 1996)

18



Transference bounds and the nΩ(n)-barrier

Compute direction d ∈ Z
d − {0} mini-

mizing

max
x∈K

dT x −min
x∈K

dT x

If width too large, then K ∩ Z
n 6= ∅
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Transference bounds and the nΩ(n)-barrier

Otherwise search for integer point re-
cursively on one of the O(n3/2 hyper-
planes (dT x = δ) ∩ P, δ ∈ Z
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Transference bounds and the nΩ(n)-barrier

Otherwise search for integer point re-
cursively on one of the O(n3/2 hyper-
planes (dT x = δ) ∩ P, δ ∈ Z

Analysis

T (n) = n3/2 · T (n− 1) 6 (n3/2)n = nO(n). (Kannan 1987)
Advantage : Polynomial space
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4. Detailed Explanation
of the randomized singly exponential algorithm by Ajtai et al. (2001)
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Singly Exponential Algorithm for SV

Ajtai, Kumar and Sivakumar (2001)

There exists a randomized 2O(n) algorithm for shortest vector.

Simplifying assumption on basis B = (b1, . . . , bn)

◮ 2 6 SV (Λ) 6 3
◮ Achievable via scaling with powers of 2/3
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Promise direction

A promise direction of x ∈ R
n, prom(x) ∈ R

n, is vector satisfying

x + prom(x) ∈ Λ.
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Desired property of promise direction

∀u ∈ Λ, x ∈ R
n : prom(x) = prom(x + u)
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Example of Promise Direction

For x ∈ R
n write x =

∑n
i=1 λi bi (B is basis of Rn) an define

prom(x) :=
n

∑

i=1

(⌊λi⌋ − λi )bi .
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Sampling and Sieving
Initialization of Algorithm

◮ Sample exponentially many points x1, . . . , xN ∈ B2(0)
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Sampling and Sieving
Initialization of Algorithm

◮ Sample exponentially many points x1, . . . , xN ∈ B2(0)
◮ Compute promise directions prom(x1), . . . , prom(xN) and store list
{(x1, prom(x1), . . . , (xN , prom(xN)}
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Sampling and Sieving
Initialization of Algorithm

◮ Sample exponentially many points x1, . . . , xN ∈ B2(0)
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R := n ·maxi ‖bi‖
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Sieving

◮ Consider promise directions prom(x1), . . . , prom(xN). In the
beginning they are red
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Sieving

◮ Consider promise directions prom(x1), . . . , prom(xN). In the
beginning they are red

◮ Pick arbitrary red point and color all points within distance R/2 to
this point green
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Sieving

◮ Consider promise directions prom(x1), . . . , prom(xN). In the
beginning they are red

◮ Pick arbitrary red point and color all points within distance R/2 to
this point green

◮ Repeat until no red points left
◮ How many centers of smaller balls ?

R

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

Number of centers bounded by

vol(B5/4(0))
vol(B1/4(0))

= 5n
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The Algorithm

While R > 6

◮ Apply sieving algorithm to the vectors prom(xi) for each
(xi , prom(xi)) in list

◮ Delete from list all tuples (xi , prom(xi)),
where prom(xi) is a center of the sieving procedure

◮ Replace (xj , prom(xj)) with

(xj , prom(xj)− (prom(xi) + xi)

where prom(xi) was center of prom(xj)

◮ R ← R/2 + 2.
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The Algorithm

While R > 6

◮ Apply sieving algorithm to the vectors prom(xi) for each
(xi , prom(xi)) in list

◮ Delete from list all tuples (xi , prom(xi)),
where prom(xi) is a center of the sieving procedure

◮ Replace (xj , prom(xj)) with

(xj , prom(xj)− (prom(xi) + xi)

where prom(xi) was center of prom(xj)

◮ R ← R/2 + 2.

Output

For each remaining (xi , prom(xi)) compute lattice vector xi + prom(xi)
and output shortest nonzero one

25



Invariants and Number of Iterations

‖prom(xj)‖ 6 R

‖promnew (xj)‖ = ‖prom(xj)− prom(xi)− xi‖

6 ‖prom(xj)− prom(xi)‖+ ‖xi‖

6 R/2 + 2 = Rnew
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Invariants and Number of Iterations
‖prom(xj)‖ 6 R

‖promnew (xj)‖ = ‖prom(xj)− prom(xi)− xi‖

6 ‖prom(xj)− prom(xi)‖+ ‖xi‖

6 R/2 + 2 = Rnew

Number of iterations

Bounded by O(log R0) with R0 = n ·maxi ‖bi‖

Number of deleted tuples

O(log R0 · 5n)

Length of generated lattice points

‖xi + prom(xi)‖ 6 2 + 6 = 8. Short !
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Invariants and Number of Iterations

‖prom(xj)‖ 6 R

‖promnew (xj)‖ = ‖prom(xj)− prom(xi)− xi‖

6 ‖prom(xj)− prom(xi)‖+ ‖xi‖

6 R/2 + 2 = Rnew

Number of iterations

Bounded by O(log R0) with R0 = n ·maxi ‖bi‖

Number of deleted tuples

O(log R0 · 5n)

Zero is short

How can one guarantee that not all xj + prom(xj) are zero ?
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A crucial observation

◮ Consider tuple (xi , prom(xi)) before the output phase of the
algorithm.
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A crucial observation

◮ Consider tuple (xi , prom(xi)) before the output phase of the
algorithm.

◮ Alg. never queried xi itself.
◮ Alg. queried prom(xi) instead.
◮ Alg. would behave just the same until this point if xi was replaced

by
xi + v for any v ∈ Λ(B),

after initialization Step.

27



Gedankenexperiment
Sets C1 and C2

◮ Let v ∈ Λ(B) be shortest vector (2 6 ‖v‖ 6 3)
◮ C1 := B2(0) ∩ B2(v) ; C2 = B2(0) ∩ B2(−v).

b b b

−v v0
C2 C1
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Gedankenexperiment
Sets C1 and C2

◮ Let v ∈ Λ(B) be shortest vector (2 6 ‖v‖ 6 3)
◮ C1 := B2(0) ∩ B2(v) ; C2 = B2(0) ∩ B2(−v).

b b b

b
−v v0

C2 C1

Toss coin

◮ If xi ∈ C1 ∪ C2 and tuple (xi , prom(xi)) has survived
◮ If coin shows head, flip xi to other side
◮ Prob. of xi + prom(xi) = 0 is 6 1/2

28



Many sampled points will be in C1 ∪ C2

Volume of C1 and C2

vol(C1)/vol(B2(0)) = vol(C2)/vol(B2(0)) > 2−2n

Sample size

If number of sampled points is Ω(log(R0) · 52n) then many points will
survive in C1 ∪ C2 and short nonzero vector is computed whp.
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Many sampled points will be in C1 ∪ C2

Volume of C1 and C2

vol(C1)/vol(B2(0)) = vol(C2)/vol(B2(0)) > 2−2n

Sample size

If number of sampled points is Ω(log(R0) · 52n) then many points will
survive in C1 ∪ C2 and short nonzero vector is computed whp.

Theorem (Ajtai, Kumar and Sivakumar (2001))

There exists a simply exponential randomized algorithm for shortest
vector.
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Extensions

More recent results

◮ Blömer & Naewe (2007, 2009) generalize to arbitrary ℓp-norm
Derandomization : (Dadush, Peikert & Vempala 2011)

◮ Blömer & Naewe (2007, 2009) also provide (1+ ε)-approximation
alg. for CVP for any ℓp-norm. Running time O(1/ε)n

◮ E., Hähnle & Niemeier (2011) : (1 + ε)-approximation alg. for
CVP for ℓ∞-norm. Running time O log(1/ε)n

30



Faster approximation alg. for CVP
∞

Why CVP∞ is particularly interesting

◮ Integer programming : Decide whether P = {x ∈ R
n : Ax 6 u}

contains integer point
◮ Reduce to IP-feasibility of l 6 Ax 6 u (standard technique)
◮ Rescale : u − l = 1
◮ Define t := l+u

2 : P contains integer point iff there exists v ∈ Λ(A)
with ‖v − t‖∞ 6

1
2
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(1 + ε)-approximate CVP
∞

Given : Λ and t
Consider cubes

◮ B := {x ∈ R
n : ‖x − t‖∞ 6 1}

◮ B′ := {x ∈ R
n : ‖x − t‖∞ 6 (1− ε)}

Task :
◮ Either : Find v ∈ Λ ∩ B
◮ Or : Assert Λ ∩ B′ = ∅.

t
1
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Boosting a 2-approximation algorithm
◮ Consider the unit hypercube H := {x ∈ R

n : ‖x‖∞ 6 1},
◮ and a scaled cube H ′ := {x ∈ R

n : ‖x‖∞ 6 1− ε}.

−1

−1

1

1

Question

How many parallelepipeds, if scaled by 2 from their centers of gravity
are contained in H, are needed to cover H ′ ?
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An O(log(1/ε))n-algorithm

−1

−1

1

1

Number of parallelepipeds

At most 2n(log 1/ε)n

Theorem (E., Hähnle & Niemeier 2011)

There is a randomized algorithm to solve (1 + ε)-gap CVP in time
(log 1/ε)n.
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Future Challenge

Open Problem

◮ Is there a simply exponential time and polynomial space alg. for
SV, CVP and integer programming ?
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