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1. Geometry of Numbers



Lattices

Lattice
A(A) = {Ax: x € Z"}, where A € R™*" is nonsingular matrix

A Central Problem : Shortest Vector
Given basis A, find shortest nonzero vector of A(A).
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Minkowski’'s theorem

Existence of short vectors

Let K C R" be convex body which is symmetric around origin (x € K
implies —x € K).

If vol(K) > 2", then K contains v € Z" \ {0}.
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Proof

To show : If K N Z = {0}, then vol(K) < 2".



Proof

Translates (1/2) -K + v, v € Z", ||V]s < M cannot intersect!

(1/2)ks +v1 = (1/2)ka + Vv, implies 0 # vy — v, = (1/2)k, — (1/2)ky € K.



Proof




Proof

ol(K)/2" < 1.

umbers — 1 and thus v



Lattice determinant

Determinant of A
A basis of A, then | det(A)| is invariant of A called lattice determinant
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Minkowski’s convex body theorem (V 2.0)

Let A C R" be a lattice and K C R" be a convex body of volume
vol(K) > 2" det(A) that is symmetric about the origin. K contains
nonzero lattice point.

Existence of short vectors
A has nonzero lattice point v with ||V | < /det(A)

(070)

vol = 2" det(A)

— /det(A) —
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2. Application : Diophantine
Approximation



Rounding a vector

[EnY
o
o

Theorem (Dirichlet)

.. a(l)
Given: ag,...,an € Rand Q € N 0 1 -~ 0 a2
There exist: g e Nand py,...,.pn € Z
with
0 0 1 )
1<q<Q" and |ga; —pi| <1/Q. 0 0 0 1/Q™

"/det(A) = 1/Q
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Rounding a vector

Theorem (Dirichlet) P1 P2 Pn q
: 1 0 0 o1)
Given: ag,...,ap € Rand Q e N 0o 1 0 o(2)
There exist: g e Nand py,...,.pn € Z _
with .
0 0 -~ 1 «n)
0 0 --- 0 1/Q"!

1<qg<Q" and |goi —pi| <1/Q.

"/det(A) = 1/Q

Rounding ¢ € Z"
Set o :=¢/||C||oo - p

1. pis integer vector with
small angle to ¢

2. Iplle < Q" @



Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : .Z C 2{0.1}"
Problem : maxyc & c"x

» Optimization problem is polynomial.
» Running time depends on n and binary encoding length of c.
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Strongly polynomial algorithms

Weakly polynomial 0/1 optimization problem

Feasible points : . C 2{0:1}"
Problem : max,cs c'x
» Optimization problem is polynomial.
» Running time depends on n and binary encoding length of c.

Weakly and strongly polynomial are equivalent for 0/1 problems

With Dirichlet : Replace ¢ by a d such that
> X € .7 is optimal w.r.t. ¢ if and only if x is optimal w.r.t. d.
» Binary encoding length of d is polynomial in the dimension n.
(Frank and Tardos 1987)

10



Some more detailed explanations

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"
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Some more detailed explanations

Round ¢

Seta:=c/||c||lcc and Q :=n
Apply Dirichlet and obtain q € Z and p € Z"

Norm of p :
Together with |||/ = 1 implies
Dl<ggn”
. o Ipllec < 0"
i) [ga; —pi| <1/n

Polynomial encoding length!

How good is p in place of c (or «)?

» X € .7 is optimal solution if and only if o (X — x) > 0 for all
X e Z.
» Optimal solutions w.r.t. « and p are the same if

sgn(p'y) =sign(a'y) forall y e {0,£1}"

11



p is almost as good as  «
vy € {0,£1}" one has
1. p'y>0=1c"y >0
2.p'ly<0=1c¢c"y<0
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p is almost as good as  «

Reminder

vy € {0,£1}" one has H)l<ggn”
1. p'ly>0=1¢c"y >0 i) [gai —pil <1/n
2.ply<0=1cTy <0

Proof of claim
Suppose p'y >0
» p'y > 1, since p and y integral.
> |gai —pil <1/n
> Thus [ga’y —pTy[=[(qa—p)Ty| <n/n=1.
» Therefore o'y >0
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p is almost as good as  «

Reminder

vy € {0,£1}" one has )l1<g<n”
1. p'y>0=1c"y >0 i) |qai —pil <1/n
2.p'ly<0=1c¢c"y<0

What if p Ty = 0? : Apply recursion

» Recursively find v € Z" such that vy € {0, £1}"
sign(vTy) = sign((q - — p)Ty).
» Let M be a large weight, then

vy € {0,£1}": sign(cTy) =sign((M -p+Vv)Ty)

» Binary encoding length of M - p + v is polynomial even if
exponential approximation of shortest vector (LLL) is used.

» Weakly and strongly polynomial are equivalent notions for 0/1
optimization problems. (Frank and Tardos 1987)
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Complexity of simultaneous diophantine approximation

Best denominator problem

Given: ag,...,an €R,e >0
Find : Minimal Q € N3, with

Q-0 — Q- qi]| <eforalli=1,...,n.

» NP-hard (Lagarias 1985)

» Hard to approximate within 2"/2 unless NP = co — NP (Lagarias
1985)

» Hard to approximate within 2" unless P = NP (E. & Rothvol3
2009)
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3. New Algorithms for Shortest Vector
and Closest Vector



Two classics

Shortest Vector

Given : Lattice basis A € Z"*",
Task : Find a shortest nonzero vector
in A(A)

Closest Vector
Given : Lattice basis A € Z"<", target

vector t € Z".
Task : Find a vector in A closest to t.

15



History of Shortest Vector

Quest for a singly exponential algorithm

| 4

First algorithms : Lagrange (1775), Gauss (1801), Hermite
(1850)

Lenstra, Lenstra & Lovasz (1982) : Polynomial 2"-approximation
algorithm

Lenstra (1983) : 2°(")- algorithm

» Kannan (1987) : n®M-algorithm

Ajtai, Kumar and Sievakumar (2001) : 2°("-randomized
algorithm for any ¢p-norm (Blomer & Naewe 2007)

Micciancio & Voulgaris (2010) : 2°("-deterministic algorithm for
Z5 only!
Singly exp. algorithms use Q(2")-space.
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History of closest vector

Quest for a singly exponential algorithm

» Lenstra (1983) : 2°(™)-algorithm for closest vector and

» Kannan (1987) : n®(M-algorithm for closest vector and integer
programming

» Blomer & Naewe (2007) : (1 + ¢)-approx. CVP for all £,-norms in
time O(1/e)" (randomized)

» Micciancio & Voulgaris (2010) : 2°(")-deterministic algorithm for
4, only!

» E., Hahnle & Niemeier (2011) : (1 + ¢)-approx. CVP for /..-norm
only in time O(log(1/¢))" (randomized)

17



Transference bounds and the  n®(M-bparrier

If KNZ" = 0 then there existsd € Z" —
{0} with

maxd'x —mindTx = O(n%?)
xeK xeK

(Banaszczyk 1996)
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Transference bounds and the  n®(M-bparrier

Compute direction d € Z¢ — {0} mini-
mizing

maxd’™x — mind " x
XeK xeK

If width too large, then K N Z" # ()

18



Transference bounds and the  n®(M-bparrier

cursively on one of the O(n%/2 hyper-
planes (d"x =38) NP, 6 € Z

/\
/ Otherwise search for integer point re-
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Transference bounds and the  n®(M-bparrier

Otherwise search for integer point re-
cursively on one of the O(n%/2 hyper-
planes (d"x =38) NP, 6 € Z

T(n)=n%2.T(n-1) < (n¥2)" =n°M, (Kannan 1987)
Advantage : Polynomial space
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4. Detailed Explanation

of the randomized singly exponential algorithm by Ajtai et al. (2001)
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Singly Exponential Algorithm for SV

Ajtai, Kumar and Sivakumar (2001)

There exists a randomized 2°(" algorithm for shortest vector.

Simplifying assumption on basis B = (b

» 2<SV(A) <3
» Achievable via scaling with powers of 2/3

20



Promise direction

A promise direction of x € R", prom(x) € R", is vector satisfying

X + prom(x) € A.
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Promise direction
A promise direction of x € R", prom(x) € R", is vector satisfying

X + prom(x) € A.

Desired property of promise direction

Yu € A, x € R": prom(x) = prom(x + u)
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Example of Promise Direction

For x € R" write x = Zi”:l Aibj (B is basis of R") an define

n

prom(x) := > (] — A)b.

i=1
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Sampling and Sieving
Initialization of Algorithm

» Sample exponentially many points Xy, ..., Xy € B,(0)

F24
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Sampling and Sieving

Initialization of Algorithm

» Sample exponentially many points Xy, ..., Xy € B,(0)
» Compute promise directions prom(xy), ..., prom(xy) and store list
{(Xl» prom(xl)» °oog (XN 3 prom(XN )}
]
[ ]
L J
. °
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Sampling and Sieving

Initialization of Algorithm

» Sample exponentially many points Xy, ..., Xy € B,(0)
» Compute promise directions prom(xy), ..., prom(xy) and store list
{(Xl» prom(xl)» °oog (XN 3 prom(XN )}

R :=n-max; ||bi||

-2
——R—

23



» Consider promise directions prom(xy), . . ., prom(xy). In the
beginning they are red
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» Consider promise directions prom(xy), . . ., prom(xy). In the

beginning they are red

» Pick arbitrary red point and color all points within distance R /2 to
this point

» Repeat until no red points left
» How many centers of smaller balls ?

vol(Bs/4(0))

vol(B1,4(0)) =5

24



The Algorithm

While R > 6

» Apply sieving algorithm to the vectors prom(x;) for each
(xi, prom(x;)) in list

» Delete from list all tuples (x;, prom(x;)),
where prom(x;) is a center of the sieving procedure

» Replace (x;, prom(x;)) with

(Xj, prom(x;) — (prom(x;) + X;)

where prom(x;) was center of prom(x;)
» R+ R/2+2.
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The Algorithm

While R > 6

» Apply sieving algorithm to the vectors prom(x;) for each
(xi, prom(x;)) in list

» Delete from list all tuples (x;, prom(x;)),
where prom(x;) is a center of the sieving procedure

» Replace (x;, prom(x;)) with

(Xj, prom(x;) — (prom(x;) + X;)

where prom(x;) was center of prom(x;)
» R+ R/2+2.

For each remaining (x;, prom(x;)) compute lattice vector x; + prom(x;)
and output shortest nonzero one
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Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
[lprom(x;) — prom(x;)|| + [|xi]
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

VAN/AN
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Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
lIprom(x; ) — prom(x;)|[ + [|xi
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

N IN

Number of iterations
Bounded by O(log Ro) with Rg = n - max; ||b;||

Number of deleted tuples
O(logRg - 5")

Length of generated lattice points

[Ixi + prom(x;)|| < 2+ 6 = 8. Short!
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Invariants and Number of Iterations

[[prom(x;)[| < R

[lprom(x;) — prom(x;) — xi|
[lprom(x;) — prom(x;)|| + [|xi]
R/2 + 2 = Rnew

|| prom,e,, (XJ)H

VAN/AN

Number of iterations
Bounded by O(log Rg) with Rp = n - max; ||b;||

Number of deleted tuples

O(logRg - 5")

How can one guarantee that not all x; + prom(x;) are zero ?
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A crucial observation

» Consider tuple (x;, prom(x;)) before the output phase of the
algorithm.
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A crucial observation

» Consider tuple (x;, prom(x;)) before the output phase of the
algorithm.
» Alg. never queried ¥; itself.
» Alg. queried prom(x;) instead.
» Alg. would behave just the same until this point if x; was replaced
b
’ xi + Vv forany v € A(B),

after initialization Step.

27



Gedankenexperiment

Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = Bz(O) N Bz(V); C, = Bz(O) n Bz(—V).
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Gedankenexperiment
Sets C; and C,

» Letv € A(B) be shortest vector (2 < |[v| < 3)
» Ci = BQ(O) N Bz(V); C, = Bz(O) n Bz(—V).

Toss coin

» If x; € C; UC; and tuple (x;, prom(x;)) has survived
» If coin shows head, flip x; to other side
» Prob. of x; + prom(x;) = 0is < 1/2

28



Many sampled points willbe in  C; UC,

Volume of C; and C,

vol(Cy)/vol (B2(0)) = vol(C5)/vol(B(0)) = 2-2"

Sample size

If number of sampled points is Q(log(Ry) - 5°") then many points will
survive in C; U C, and short nonzero vector is computed whp.
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Many sampled points willbe in  C; UC,

Volume of C; and C,
vol(Cy)/vol(B2(0)) = vol(C,)/vol(B,(0)) > 2-2"

Sample size

If number of sampled points is Q(log(Ry) - 5°") then many points will
survive in C; U C, and short nonzero vector is computed whp.

Theorem (Ajtai, Kumar and Sivakumar (2001))

There exists a simply exponential randomized algorithm for shortest
vector.
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Extensions

More recent results

» Blomer & Naewe (2007, 2009) generalize to arbitrary £y-norm
Derandomization : (Dadush, Peikert & Vempala 2011)

» Blémer & Naewe (2007, 2009) also provide (1 + ¢)-approximation
alg. for CVP for any /,-norm. Running time O(1/e)"

» E., Hahnle & Niemeier (2011) : (1 + ¢)-approximation alg. for
CVP for £-.-norm. Running time O log(1/¢)"

30



Faster approximation alg. for CVP

Why CVP is particularly interesting

» Integer programming : Decide whether P = {x e R" : Ax < u}
contains integer point

» Reduce to IP-feasibility of | < Ax < u (standard technique)

» Rescale:u—I1=1

» Define t := 5% : P contains integer point iff there exists v € A(A)
with v —t|| < 3

31



(1 + )-approximate CVP

Given : Aand t

Consider cubes - __C
> Bi={xeR": [x—t], <1}
» B i={xeR": |x—-t]| < (1-¢)}

Task :

» Either: Findv e ANB
» Or:AssertANB' =¢0. |t ---------




Boosting a 2-approximation algorithm

» Consider the unit hypercube H := {x e R" : ||x|| <1},
» and a scaled cube H := {x e R" : |x||, <1—¢}.

,,,,,,,,,,,,,,,

How many parallelepipeds, if scaled by 2 from their centers of gravity
are contained in H, are needed to cover H' ?
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Boosting a 2-approximation algorithm

» Consider the unit hypercube H := {x e R" : ||x|| <1},
» and a scaled cube H := {x e R" : |x||, <1—¢}.

Question

How many parallelepipeds, if scaled by 2 from their centers of gravity
are contained in H, are needed to cover H' ?
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An O(log(1/¢))"-algorithm

-1

Number of parallelepipeds

At most 2"(log 1/¢)"

Theorem (E., Hahnle & Niemeier 2011)

There is a randomized algorithm to solve (1 + ¢)-gap CVP in time
(log1/e).

34



Future Challenge

» Is there a simply exponential time and polynomial space alg. for
SV, CVP and integer programming ?
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