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The Dawn of an Algebraic Era in Discrete Geometry?

Jǐŕı Matoušek∗

Section One, Where the Author Is Browsing the
2010 ArXiv

To me, 2010 looks as annus mirabilis, a miracu-
lous year, in several areas of my mathematical inter-
ests. Below I list seven highlights and breakthroughs,
mostly in discrete geometry, hoping to share some of
my wonder and pleasure with the readers.

Of course, hardly any of these great results have
come out of the blue: usually the paper I refer to
adds the last step to earlier ideas. Since this is an
extended abstract (of a nonexistent paper), I will be
rather brief, or sometimes completely silent, about the
history, with apologies to the unmentioned giants on
whose shoulders the authors I do mention have been
standing.1 A careful reader may notice that together
with these great results, I will also advertise some
smaller results of mine.

• Larry Guth and Nets Hawk Katz [16] completed
a bold project of György Elekes (whose previous
stage is reported in [10]) and obtained a near-
tight bound for the Erdős distinct distances
problem: they proved that every n points in
the plane determine at least Ω(n/ log n) distinct
distances. This almost matches the best known
upper bound of O(n/

√
log n), attained for the√

n ×
√
n grid. Their proof and some related

results and methods constitute the main topic of
this note, and will be discussed later.

• János Pach and Gábor Tardos [27] found tight
lower bounds for the size of ε-nets for geometric
set systems.2 It has been known for a long time
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1I should also add that my selection is entirely personal and
subjective, shall not indicate or imply any ranking of the results
listed, any judgment of results not mentioned, or any compar-
ison thereof, and shall not encompass any warranty of sound
and safe conditions of the cited papers or any liability on my
side, in particular, no rights of readers or third parties to be
indemnified in case of loss or damage directly or indirectly re-
lated to the aforementioned papers. But I do not want this
abstract to look like a car rental contract.

2Let F be some system of subsets of Rd, say all closed half-
spaces or all axis-parallel boxes, and let X be a finite set in Rd.
A subset N ⊆ X is called an ε-net for X with respect to F ,
where ε ∈ [0, 1] is a given real number, if N intersects every
“large” set, i.e., every F ∈ F for which |F ∩X| ≥ ε|X|.

that for systems such as halfspaces, balls, sim-
plices in Rd, for d fixed, ε-nets of size O( 1

ε log 1
ε )

exist, for every finite set X and every ε. The
proof was based on a very general combinato-
rial property of the considered set system, called
bounded VC-dimension, and there was hope that
simple geometrically defined systems might ad-
mit even smaller ε-nets, perhaps of size O( 1

ε ). In-
deed, there were some reasons for optimism, since
O( 1

ε ) was known for halfspaces in R3, and more
recently, Aronov, Ezra, and Sharir [2] proved
an O( 1

ε log log 1
ε ) upper bound for axis-parallel

rectangles in R2. However, Alon [1] established
the first superlinear lower bound in a geomet-
ric setting (for lines in the plane), and Pach and
Tardos got the tight lower bound of Ω(1

ε log 1
ε )

for halfspaces in R4, as well as Ω(1
ε log log 1

ε ) for
axis-parallel rectangles in R2. These results may
perhaps not look as significant to others, but
for me, they close a long open and tantalizing
problem, which for myself I considered almost
hopeless. Moreover, I think that the proofs con-
tain (reinforce?) a general lesson: in order to
prove an “irregularity” result, in the sense that
something cannot be very uniform, it may of-
ten be good to strive for a Ramsey-type result,
showing that there has to be a completely non-
uniform, “monochromatic” spot—in the case of
ε-nets, this way even gives a tight quantitative
bound!

• Mikhail Gromov [14] invented a new topologi-
cal proof of the first selection lemma. The
lemma states that for every n-point set P ⊂ Rd
there exists a point a (not necessarily in P ) con-
tained in at least cd

(
n
d+1

)
of the d-dimensional

simplices with vertices in P , where cd is a pos-
itive constant depending only on d. (There are(
n
d+1

)
d-simplices spanned by P in total, so a is

in a positive fraction of them.) Gromov’s proof
yields significantly better value of cd than all pre-
vious ones, provides a far-reaching generalization,
and hopefully opens a way towards deeper under-
standing of many related problems. By including
Gromov’s paper in my 2010 list I am cheating
slightly, since a preprint was circulated one or
two years earlier. But a completely honest 2010
item was supplied by Karasev [21], who found a
greatly simplified and fairly elementary version
of the argument. Readers interested in the com-
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binatorial issues involved and in attempts at ex-
plaining Gromov’s method may also reach for a
paper of Wagner and mine [25].

• Francisco Santos [28] disproved the 1957 Hirsch
conjecture, which states that the graph of a d-
dimensional convex polytope with n facets has
diameter at most n−d. The conjecture was moti-
vated by linear programming, more precisely, by
the analysis of simplex-type algorithms. Santos’
ingenious examples have diameter (1 + ε)(n− d)
for a small positive ε, and the fascinating ques-
tion of maximum diameter of a d-polytope with
n facets has become even more interesting (and
the subject of Gil Kalai’s polymath project), the
best upper bound being nO(log d) [18].

• Oliver Friedmann, Thomas Dueholm Hansen,
and Uri Zwick [13] proved very strong lower
bounds for various randomized simplex al-
gorithms.

The simplex method from the late 1940s remains
one of the best linear programming algorithms in
practice, but a construction known as the Klee–
Minty cube showed in the 1970s that some of the
widely used variants are exponential in the worst
case. This started a quest for a polynomial-time
version, and on the optimistic side, a subexpo-
nential upper bound, of roughly exp(O(

√
n )),

was proved in 1992 for an algorithm known as
RANDOM FACET. There was hope that the
analysis might be further improved, or that some
other randomized variant could be shown to be
polynomial.

Friedmann et al. shattered these great expecta-
tions almost completely, by proving an almost
matching lower bound for RANDOM FACET,
as well as a similar lower bound for another
promising-looking algorithm known as RAN-
DOM EDGE (lower bounds of this kind were
known before, but only for the performance of
these algorithms on certain “generalized linear
programs”, while the possibility of polynomial
bounds for actual linear programs was still open).
They use a powerful new way of constructing
“difficult” linear programs, based on randomized
parity games. The potential of this approach ap-
parently has not yet been exhausted.

• Nikhil Bansal [3] found a polynomial-time algo-
rithm for computing low-discrepancy col-
orings,3 using semidefinite programming and in-
genious rounding via a high-dimensional random

3The input to the algorithm is a set system F on a finite
set X, and the output is a coloring χ of X by +1s and −1s.
The discrepancy disc(χ,F) of χ is the maximum, over all sets
F ∈ F , of the “imbalance” of F , i.e., of

∣∣∑
x∈F χ(x)

∣∣. The
discrepancy of F is minχ disc(χ,F), where the minimum is over
all possible ±1 colorings of X.

walk. The algorithm is not an approximation al-
gorithm for discrepancy in general (indeed, ap-
proximating discrepancy is pretty much hopeless
[5]), but it makes several existential bounds for
the discrepancy of certain set systems, such as
all arithmetic progressions on {1, 2, . . . , n}, con-
structive, which has been a major open problem
in discrepancy theory. It also has structural con-
sequences; one of the quick spinoffs is a near-tight
answer [24] to an old questions of Sós concern-
ing the discrepancy of a union of two set sys-
tems on the same ground set (besides Bansal’s
algorithm, the answer also relies on a beautiful
linear-algebraic lower bound for discrepancy of
Lovász, Spencer, and Vesztergombi [22]).

• June Huh [17] proved log-concavity of the
sequence of coefficients of the chromatic
polynomial.4 More precisely, for the chromatic
polynomial written as a0+a1x+· · ·+anxn, Huh’s
result asserts that ai−1ai+1 ≤ a2i for every i (and
for an arbitrary graph G, of course). This im-
plies that the sequence (|a0|, |a1|, . . . , |an|) is uni-
modal, a 1968 conjecture of Read.

The proof relies on connections of the problem
to singularities of local analytic functions and ul-
timately to mixed multiplicities of certain ide-
als. This result does not entirely fit my list since
it cannot be passed for discrete geometry even
with considerable indulgence, but it looks beau-
tiful and it does rest on geometric ideas. I do not
understand much of it, but perhaps some day I
will have enough time and energy to learn the
necessary background or someone will explain it
to me—at least it does not look as intimidating
as some other papers.

Section Two, On Distinct Distances and Other Al-
gebraic Magic

The following three problems were raised by Erdős
[12] in 1946:

• Estimate the maximum possible number of inci-
dences between a set P of m points and a set L
of n lines in the plane (where an incidence is a
pair (p, `) with p ∈ P , ` ∈ L, and p ∈ `).

• Estimate the maximum number of unit dis-
tances among n points in the plane. This can
also be reformulated using incidences; up to a
multiplicative factor of at most 2, one wants to
estimate the maximum number of incidences be-
tween n unit circles and n points in the plane.

4The chromatic polynomial of a graph G is a polynomial
whose value at a natural number k equals the number of proper
coloring of G with k colors. It can be shown that such a poly-
nomial indeed exists, and is determined uniquely, for every G.
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• Estimate the minimum number of distinct dis-
tances determined by n points in the plane.

The first two of these problems, incidences and unit
distances, look quite similar at first sight. For point-
line incidences the order of magnitude was determined
precisely by Szemerédi and Trotter [31] in 1983; in
particular, for n points and n lines the bound is of
order n4/3. Two other, much simpler proofs were dis-
covered later, by Clarkson et al. [6] and by Székely
[30]. These proofs are “combinatorial”, in the sense
that they do not use the straightness of the lines (and
thus they also work for incidences of points with pseu-
dolines, i.e., with systems of curves satisfying certain
simple combinatorial axioms).

For unit distances, or incidences of unit circles with
points, a modification of these proofs also yields an
O(n4/3) upper bound, but here a matching lower
bound is lacking—the best known example, a suitable
grid, yields only a near-linear bound, smaller than
n1+δ for every fixed δ > 0. Erdős conjectured this
lower bound to be essentially optimal.

Many ingenious techniques have been developed for
bounding the number of incidences in various settings;
see, e.g., a recent survey by Pach and Sharir [26].
However, none of them seems capable of breaking the
n4/3 barrier. Moreover, the unit distance problem can
be considered not only for the Euclidean norm, but
also for other norms in the plane, and Valtr [32] con-
structed a norm for which n-point sets actually exist
with Ω(n4/3) unit distances. This indicates that lim-
its of combinatorial approaches to the unit distance
problem, powerful as they are, have been reached.

It seems that for further progress on unit distances
(in the upper bound, which should be the way to go
according to Erdős and general belief) one has to use
some algebraic properties of the circle.

Indeed, while the unit distances problem still
stands, the distinct distances problem was essen-
tially settled by Guth and Katz, as was already
mentioned—and their proof combines ingenious alge-
braic arguments (using tools from algebraic geometry,
mostly dating back to the 19th century) with geo-
metric, or perhaps topological, considerations similar
to those appearing in earlier higher-dimensional inci-
dence proofs.

The Guth–Katz proof is somewhat complicated
(and I am sure simpler variants will be found sooner
or later), and I will not attempt to even sketch it here.
I will just mention two of its main ingredients.

One of them is a simple but surprisingly powerful
trick invented by Dvir [7], which can be illustrated on
another remarkable recent achievement in incidence
problems, the joints problem (solved in another paper
of Guth and Katz [15], with further simplifications
and extensions by Elekes, Kaplan, Sharir, Shustin,
and Quillodrán; the following outline mostly follows

[19]). We consider a set L of n lines in R3, and call a
point a ∈ R3 a joint if there are at least three lines of
L, not all coplanar, passing through a. The question
is, what is the maximum possible number of joints for
n lines, and the answer is O(n3/2) (with a matching
lower bound example provided by a suitable grid of
lines). The proof goes as follows.

For contradiction, we suppose that a set L of n
lines has at least Cn3/2 joints, with C very large (and
n even much larger). Let J be the set of all joints of
L, and let m := |J |.

We first need to prune L and J so that all of the
remaining lines contain many joints. By a simple
pruning procedure (repeatedly discarding lines with
a small number of joints and all the joints incident to
them) we can select L′ ⊆ L and J ′ ⊆ J so that every
` ∈ L′ contains at least k := m/2n points of J ′, and
each point of J ′ is a joint of the lines in L′.

Next, a simple argument shows that there exists a
nonzero polynomial in three variables that vanishes
on all points of J ′ and has degree at most 4m1/3 (the
condition of vanishing on J ′ is expressed by a sys-
tem of homogeneous linear equations with the coef-
ficients of the desired polynomial as unknowns, and
when the number of unknowns exceeds the number
of equations, a nonzero solution exists). Among all
nonzero polynomials vanishing on J ′ we choose one
of the smallest possible degree and call it f ; we thus
have D := deg(f) ≤ 4m1/3.

Let us consider the restriction f` of f to a line
` ∈ L′. It vanishes at each of the at least k points
of J ′ incident to `. Since f` can be regarded as a uni-
variate polynomial of degree at most D, either it is 0
everywhere on `, or it has at most D zeros there. But
for large C we have D < k, and so we get that f` ≡ 0.
Thus f vanishes on all lines of L′.

Now we let ~g := ∇f = (∂f∂x ,
∂f
∂y ,

∂f
∂z ) be the gradient

of f (this is a polynomial mapping R3 → R3). Since
f vanishes along every ` ∈ L′, the projection of ~g(p)
onto ` also vanishes for all p ∈ `. In other words, ~g(p)
is perpendicular to `. In particular, if we look at a
joint a ∈ J ′, we obtain that ~g(a) is perpendicular to
three non-coplanar lines, and hence ~g(a) = (0, 0, 0).

Since taking a partial derivative decreases the de-
gree of a polynomial, each of the three components of
~g is a polynomial of degree smaller than D, and we
have just proved that it vanishes on J ′. Since f was
the smallest-degree nonzero polynomial vanishing on
J ′, ~g must be identically 0. This means than f is con-
stant, and this is a contradiction (since we assumed it
to be nonzero and to vanish on J ′), which concludes
the proof.

This was Dvir’s trick in action, and now, what is
the trick? An idea turned into a recipe often loses
much of its usefulness, but a vague general formu-
lation might perhaps be this: one constructs a low-
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degree polynomial vanishing on the considered points,
or other “low-dimensional” objects, infers that it has
to vanish on some other objects of higher dimension as
well, and derives a global conclusion about the poly-
nomial, such as vanishing of the gradient.

Another ingredient of the distinct distances proof,
which was invented by Guth and Katz for this pur-
pose, are space partitions using polynomials. Given a
finite set P ⊂ Rd and a parameter r, 1 < r ≤ |P |,
they apply the polynomial ham-sandwich theorem of
Stone and Tukey to obtain a partition of Rd. Namely,
they construct a nonzero polynomial f so that no con-
nected component of Rd \ Z(f) contains more than
|P |/r points of P (where Z(f) is the zero set of f). A
key feature of the construction is that deg(f) need not
be too high, only O(r1/d), and thus the interaction
of other objects, such as lines or hyperplanes, with
Z(f) is under control in some sense. This method
provides an alternative to previous space partitioning
techniques, such as cuttings or simplicial partitions,
and in some respects it is apparently more powerful
than these earlier tools.

A simple example of using these polynomial parti-
tions is a new simple proof of the Szemerédi–Trotter
upper bound on point-line incidences. Together with
some other applications, we have described this in de-
tail in a recent preprint with Kaplan and Sharir [20],
and so it will not be discussed here.

There are several other encouraging examples of
“enriching discrete geometry with algebra” besides
those mentioned above, a major share of them due
to Elekes and his co-authors.

One of the major directions are sum-product the-
orems, originally a number-theoretic issue. The ear-
lier stages, dealing with real numbers, are nicely sur-
veyed in Elekes [8]. Then, after Bourgain, Katz,
and Tao [4] obtained a sum-product theorem in fi-
nite fields, there has been a great surge of activity,
and the sum-product business has been extended far
beyond the borders of discrete geometry (and far be-
yond the intended scope of the present note). It has
found many diverse applications, including in num-
ber theory, group theory, and the explicit construc-
tions of extractors and Ramsey graphs. An acces-
sible initial picture and references can be gained,
e.g., from a talk of Wigderson as recorded in the
lecture notes at http://www.math.cmu.edu/~af1p/

Teaching/AdditiveCombinatorics/allnotes.pdf.

Another interesting (and related) direction can be
represented, e.g., by the papers of Elekes and Rónyai
[9] and of Elekes, Simonovits, and Szabó [11]. I will
mention only a rather concrete consequence of the
results of [9], known as Purdy’s conjecture. Let C
be a constant, let a and b be lines in the plane, let
p1, . . . , pn be distinct points on a, and let q1, . . . , qn
be distinct points on b. Purdy’s conjecture, now a the-

orem, states that if the set of the Euclidean distances
{‖pi− qj‖ : i, j = 1, 2, . . . , n} has at most Cn distinct
elements, and if n is sufficiently large, then a and b
must be either parallel or perpendicular. Actually, it
seems that it should be sufficient to assume at most
n2−ε distinct distances, for some fixed ε > 0, and the
conclusion should still hold, but this is wide open at
present.

The last two “algebraic” contributions mentioned
here concern the unit distances problem, or rather,
they deal with variants of it. Schwartz et al. [29]
proved that if we count only unit distances with ratio-
nal angles (i.e., attained for pairs of points p, q such
that the angle of the line pq with the x-axis is a ra-
tional multiple of π), then the number of these spe-
cial unit distances is bounded by O(n1+ε), for every
fixed ε > 0. In [23], I proved that there exist norms
in the plane for which the number of unit distances
obeys the upper bound O(n log n log log n) (while ev-
ery norm admits sets with Ω(n log n) unit distances,
and, according to Valtr [32], some norms allow for as
many as Ω(n4/3) unit distances). The proof combines
a linear-algebraic argument, a graph-theoretic lemma
we proved earlier for another purpose with Př́ıvětivý
and Škovroň, and a Baire category argument.

The above short survey certainly does not exhaust
all significant examples of algebraic methods used in
discrete geometry. Moreover, I have no doubts that,
while I am writing this, bright mathematicians are
working hard on extending the Guth–Katz break-
through and on other amazing algebraic methods and
applications.

So, does this signify the beginning of an algebraic
era in discrete geometry? My list at the beginning
of this note shows a more balanced picture, with
topology, probability, optimization, and ingenuity in
a friendly competition with algebra, but it indicates
that the best results have usually been achieved not
only by cleverness and new ideas, but also by applying
more and more advanced tools from various branches
of mathematics. So I am not sure about an algebraic
era, but, just in case, recently I have ordered five text-
books on algebraic geometry and such things for my
PhD students and myself.

Acknowledgment. I would like to thank Micha
Sharir, Imre Bárány, and Uli Wagner for valuable
comments to a draft of this note.
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