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Construction of Common Unfolding of a Regular Tetrahedron and a Cube
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Abstract

A procedure that produces a common unfolding of a
regular tetrahedron and a cube is given. It is adapt-
able to the length of an edge. If we allow a small error
of the length of an edge of the tetrahedron, the proce-
dure certainly halts and generates a common unfold-
ing of a cube and an almost regular tetramonohedron.
If we wish to generate the common unfolding of them
with accuracy, we conjecture that the procedure does
not halt and we obtain the common unfolding in the
limit as a set of infinitely many points. The procedure
has a potential to design a fractal structure given in
a continued fraction form.

1 Introduction

Recently, several polygons that can fold to two differ-
ent polyhedra have been developed (Table 1). Such a
polygon is called a common unfolding of the polyhe-
dra1. Observing these impressive unfoldings, it is nat-
ural to ask that whether there is a common unfolding
of two (or more) different Platonic solids. This ques-
tion has arisen several times independently, and it is
still open (see [3, Section 25.8.3]).

In this paper, we give a procedure that generates
a common unfolding of a regular tetrahedron and a
cube2. The procedure is adaptable to the length of
an edge of the tetrahedron. More precisely, the proce-
dure generates the common unfolding of a cube and an
almost regular tetramonohedron. If we wish to gen-
erate the common unfolding of a cube and a regular
tetrahedron, the procedure produces a set of an infi-
nite number of points, and we obtain the common un-
folding in the limit. In a sense, this procedure gives an
affirmative answer to the open problem; there exists a
common unfolding of two Platonic solids (if our con-
jecture based on experiments is true). When we admit
some error, say ε > 0, then the procedure always halts
and it certainly generates a common unfolding of a
cube and an almost regular tetramonohedron whose
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1Note that an edge of an unfolding can pass through a flat

face of the polyhedra. See an unfolding of a cube in Figure 1.
2In this paper, a cube always means a unit cube that is a

box of size 1 × 1 × 1.

edge lengths are within the interval [`−ε, `+ε], where
` =

√
2
√

3 is the length of an edge of the regular tetra-
hedron of surface area 6. Experimentally, we obtain
a common unfolding of a cube and an almost regular
tetramonohedron with ε < 2.89200 × 10−1796.

Although we obtain an unfolding close to the ideal
one, the connectivity of the unfolding generated by
the procedure is not guaranteed in general. From the
experimental results, we conjecture some useful prop-
erties of the unfolding. Based on it, we can take ar-
bitrarily small ε > 0 to obtain such an unfolding of a
cube and an almost regular tetramonohedron.

The behavior of the procedure seems to rely on
the continued fraction form of the length of an edge.
On the other hand, it is well known that some real
numbers have simple (but infinite) continued fraction
forms. The conjecture would imply that our proce-
dure is also useful to generate so called fractal curves
based on these forms; see Figures 6 and 7 in Appendix.

2 Preliminaries

We first show some basic results about unfolding of a
convex polyhedron.

Lemma 1 ([3, Sec. 22.1.3]) All vertices of a poly-
hedron X are on the edges of any unfolding of X.

Let P be a polygon on the plane, and R be a set of
three points (called rotation centers) on the boundary
of P . Then P has a tiling called symmetry group p2
if P fills the plane by the repetition of 2-fold rotations
around the points in R. The filling should contain no
gaps nor overlaps. The rotation defines an equivalence
relation on the points in the plane. Two points p1 and
p2 are mutually equivalent if p1 can be moved to p2

by the 2-fold rotations. More on the properties of p2
tiling can be seen, e.g., in [5]. Based on the notion
of p2 tiling, any unfolding of a tetramonohedron3 can
be characterized as follows:

Theorem 2 ([1, 2]) P is an unfolding of a tetra-
monohedron if and only if (1) P has a p2 tiling, (2)
four of the rotation centers consist in the triangular
lattice formed by the triangle faces of the tetramono-
hedron, (3) the four rotation centers are the lattice
points, and (4) no two of the four rotation centers
belong to the same equivalent class on the tiling.

3A tetramonohedron is a tetrahedron that consists of four
congruent triangles.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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A regular octahedron and a tetramonohedron [3, Figure 25.50]
A regular tetrahedron and a box of size 1 × 1 ×

√
3 − 1/2 = 1.232 [3, Figure 25.51]

A cube and a tetramonohedron of size 1 :
√

34/6 :
√

34/6 = 0.9718 [6]
A regular octahedron and a tetramonohedron of size 1.0072 : 0.9965 : 0.9965 [6]
A regular icosahedron and a tetramonohedron of size 1 : 1.145 : 1.25 [4]

Table 1: Known common unfoldings of a regular polyhedron and another (nonregular) polyhedron.
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Figure 1: An initial unfolding P1 of a cube.

We start from an unfolding P1 of a cube in Figure 1.
(The points c1, c2, p, p′ are the centers of correspond-
ing edges.) The thick lines in the figure gives an un-
folding of a cube. Also, P1 satisfies the conditions
of Theorem 2 with four points c1, c2, c3, c4; that is,
P1 is an unfolding of a tetramonohedron. We here
note that c1c2 is in parallel to the lines L1 and L2,
and the tiling is split by lines L1 and L2 into “paral-
lel ribbons.” Thus we obtain infinitely many tilings
by shifting these ribbons into any position along the
lines. This fact implies that we can move the rotation
centers c3 and c4 to any positions along L1 and L2,
respectively, as long as |c1c3| = |c2c4| (and hence
|c1c4| = |c2c3| ) without changing the surface area of
the tetramonohedron. That is, P1 is a common un-
folding of a cube and an infinitely many tetramono-
hedra. (In the context of [3, Section 25], L1 and L2

make a rolling belt that is zipped to the edge c3c4.)
Here we have |c1c2| =

√
13/2 = 1.80278, and each

area of four congruent triangles is 3/2. Thus taking
|c3c1| = |c3c2| = |c4c1| = |c4c2| in Figure 1, we
have the following lemma:

Lemma 3 There exists a common unfolding of a
cube and a tetramonohedron with edge lengths√

13/2 :
√

745/208 :
√

745/208 = 1.80278 : 1.89255 :
1.89255.

The tetramonohedron in Lemma 3 is close to a regular
tetrahedron. Our goal is to modify the edge lengths
to the equal length

√
2
√

3 = 1.86121.

Figure 2: Fixed points on an unfolding.

3 Procedure for a common unfolding

Our procedure transforms P1. More precisely, it
moves c1 to the right and c2 to the left, respectively.
Through these transformations, we keep two invari-
ants for the polygon P1 that P1 is an unfolding of a
cube, and P1 is an unfolding of a tetramonohedron
with |c1c3| = |c1c4| = |c2c3| = |c2c4| . Hence, when
|c1c2| becomes

√
2
√

3, we obtain a common unfolding
of a cube and a regular tetrahedron. When we move
c1 and c2, a series of discrete processes occurs. It will
not terminate if we try to change from |c1c2| =

√
13/2

to |c1c2| =
√

2
√

3 as shown later. Thus we have two
choices; the common unfolding of a cube and the reg-
ular tetrahedron in the limit as the set of infinitely
many points, or a common unfolding of a cube and
an almost regular tetramonohedron for any given error
ε > 0. Here we define the almost regular tetramono-
hedron with error ε > 0 by a tetramonohedron with
|c1c2| ∈ [

√
2
√

3 − ε,
√

2
√

3 + ε].
Now we show how to stretch the distance between

c1 and c2 and change |c1c2| from
√

13/2 = 1.80278 to√
2
√

3 = 1.86121. Intuitively, we will slightly move
the points c1 and c2 horizontally farther.

We here observe that, white circles in Figure 2 come
to two “center points” in the top and bottom squares
in the cube. If we remove these points, the squares
have holes. On the other hand, if the unfolding con-
tains these points inside, the squares have overlaps.
Hence these points should be on the edge of P1. More-
over, by Lemma 1, the vertices of the cube (black
points in Figure 2) also should be on an edge of P1.
We call these immovable points fixed points of the un-
folding.

Here we focus on the top edges of P1. There are
eight fixed points, and we have a rotation center c1
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Figure 3: The construction of the points on edges of
the unfolding of a cube and a tetramonohedron.

on it. To describe exactly, we define xy-coordinate on
the edges; let one of the fixed points, or the vertex of
the (unit) cube closest to c1 be f0 = (0, 0) (Figure 3).
Then the initial position of c1 is (1/4, 1/4). Now,
we assume that the rotation center c1 = (1/4, 1/4) is
moved to c′1 = (1/4+`1, 1/4) for small `1. Since f0 is a
fixed point and c′1 should be the rotation center, f1 =
(1/2 + 2`1, 1/2) has to be a point on the edge of the
unfolding. Moreover, when this unfolding folds up to
a cube, f1 will be put on the point f2 = (1+1/2, 1/2−
2`1). Hence f2 is also a point on the edge of the
unfolding4. Since they form a symmetrical unfolding,
when the point f2 = (1+1/2, 1/2−2`1) is placed, the
equivalent point (1/2, 1/2 − 2`1) is also placed. That
is, the equivalent relation (x, y) ≡ (x− 1, y) is always
applied. We can repeat this process and obtain a set
of points which should be on edges of the unfolding
with the new rotation center c′1 = (1/4 + `1, 1/4). In
other words, we have a set of points that should be on
edges of the unfolding with respect to the shift value
`1. For this procedure, we have the following lemma:

Lemma 4 The procedure of mapping the fixed
points halts if and only if `1 is a rational number.

Proof. If `1 = p
q with 0 < p < q for some positive

integers p and q, all the mapped points from the fixed
points are onto a lattice of size O(pq). Hence the
procedure can be terminated when the mapping visits
some point again. On the other hand, if `1 is not a
rational number, the same coordinate never appears
and the procedure will not terminate. �

Using the procedure, we can slightly move c1 and c2

horizontally, and stretch |c1c2| to the desired length.
We now combine the construction in Figure 1; we also

4Precisely, before computing this “rotation” of the point
f1 to f2, we have to determine if f1 is on the left side or on
the right side of the unfolding. Depending on the side, we
have to choose the direction of the rotation from clockwise and
counterclockwise. When the point fi is just on the boundary,
or when fi = (0, j) or fi = (0.5, j) with j > 0, we need some
“clue;” to decide that, we also maintain which side is “inside”
of the unfolding for each point fi. But the details are omitted
in this draft.

Figure 4: An example of an unfolding of a cube and
a tetramonohedron.

tilt the lines L1 and L2 in parallel with c1c2 consistent
to the surface area, and obtain the desired unfolding.
For example, Figure 4 is a common unfolding of a
cube and a tetramonohedron such that `1 = 4/21 and
`2 = 5/24, where `2 is the distance that c2 is moved
to the left.

In general, this procedure does not always gener-
ates a connected unfolding. More precisely, two lines
L1 and L2 may cut the unfolding into disconnected
pieces. To guarantee that these lines does not divide
the unfolding, we have to investigate the generated
edges by the procedure. We experimentally gener-
ated many unfoldings, and obtain the following ob-
servation, but we have no proof and no formal char-
acterization of this sets of points up to now:

Observation 1 We let `1 = (1 − φ1)/4 and `2 =
(1 − φ2)/4, where φ1 and φ2 are given in contin-
ued fraction forms5 φ1 = 1

a1±
1

a2±
1

a3± · · · 1
ak

, and

φ2 = 1
b1±

1
b2±

1
b3± · · · 1

bh
. Then, each upper edge of the

unfolding is given by the waves recursively defined by
ai as follows. We first replace a line segment of the
original P1 by a curve with a1 “waves;” it is a trian-
gular wave or a square wave depending on the parity
of a1. Then, each edge is again replaced by the waves
decided by a2, and so on. The signal determines the
first direction of the wave.

For example, in Figure 4, `2 = (1 − 1/6)/4 = 5/24,
or φ2 = 1/6. Hence the lower edges consist of a
square wave of 6 peeks. On the other hand, since
φ1 = 5/21 = 1/(4 + 1/5), each upper edge consists of
a square wave of four peeks of which each edge of the
square consists of a triangular wave of five peeks.

We conjecture that the observation certainly holds,
but no proof and no exact characterization of the
“wave” are given. However, we can construct an ac-
curate connected unfolding based on the observation.
Precisely, we obtain several values by a brute force
algorithm that alternately chooses a1, b1, a2, b2, . . . to

5This “continued fraction form” is slightly different from the
standard one. In the standard form, ai ≥ 1 and all signs are
“+.” In our continued fraction form, we use “−” and avoid the
case ai = 1 for i > 1. The details are omitted in this draft.
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Figure 5: A common unfolding of a cube and a (non-
regular) octahedron.

be closer `1 + `2 =
√

2
√

3 − 9/4 − 1: a1 = 4, b1 =
6, a2 = 6, b2 = −34, a3 = −42, b3 = −14, a4 =
−116, b4 = −2146, a5 = 4010, b5 = −3316, a6 =
−4958, b6 = 8684, a7 = −7820, b7 = 7082, a8 =
2668, b8 = −3684, a9 = 4564, b9 = 1662, a10 =
560, b10 = −158, . . .. We have obtained a connected
unfolding for each i. When we use up to a10 and b10,
we obtain ε < 4.63451 × 10−56, and the values up to
a50 and b50 give us ε < 2.89200 × 10−1796:

Theorem 5 There exists a common unfolding of a
cube and an almost regular tetramonohedron with an
error ε < 2.89200 × 10−1796.

We conjecture that this process can be repeated in
arbitrary large, and we obtain a connected common
unfolding of a cube and a regular tetrahedron in the
limit:

Conjecture 1 There exists a series of points that
converges to a connected common unfolding of a cube
and a regular tetrahedron in the limit.

4 Concluding Remarks

We give a procedure that generates a common un-
folding of a cube and a regular tetrahedron. But this
is not completed: the procedure does not halt, and it
might produce a disconnected unfolding. The proof of
the observation, or the characterization of the curve
generated by the procedure is a future work. We also
conjecture that a similar construction of a common
unfolding of a regular octahedron and a tetramono-
hedron works.

It is a challenging problem to try to the other pair
of Platonic solids rather than a regular tetrahedron;
in the case, we cannot use tiling as a tool any more.
However, recently, the first author finds a common un-
folding of a cube and a (nonregular) octahedron (Fig-
ure 5; note that this octahedron consists of two regular
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Figure 6: The set of the first 5000 points given by the
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Figure 7: The set of the first 10000 points given by
the silver ratio φ =
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triangles of edge length
√

2, and six triangles of edge
lengths

√
2,
√

24 − 6
√

3/3,
√

24 − 6
√

3/3). Hence it
is not so easy to give some negative results, and we
might have a common unfolding of the other solids.

Appendix

Based on the observation, we can design and gener-
ate some fractal pattern for a certain real number φ.
Some experimental results are given in Figures 6 and
7.
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