
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Constructing Optimal Shortcuts in Directed Weighted Paths

R. Klein∗ M. Krug† E. Langetepe∗ D. T. Lee‡ D. Wagner†

Abstract

We show that the optimum shortcut, with respect to
routing cost, in a directed path with weighted vertices
can be found in linear time. To this end, we construct
in linear time the lower envelope of an arrangement
of pseudo-lines whose order at infinity is given. The
algorithm can also be applied to star-shaped directed
networks.

Keywords: Arrangements, computational geom-
etry, lower envelope, network optimization, pseudo-
line, routing cost, shortcut edge.

1 Introduction

Transportation networks can be modelled by graphs
in a number of different ways. Quite frequently, ver-
tices represent cities, and edges stand for highway or
railroad connections between them. In the routing
cost model, the overall quality of a network is mea-
sured by the sum of the lenghts of all shortest paths
between all pairs of vertices; see Wu and Chao [6].
Here the length of a path equals the sum of the lengths
of its edges.

We are interested in augmenting a given network,
by adding an extra edge to it in such a way that its
routing cost is reduced as much as possible. In our
model each edge is of unit length, reflecting a situa-
tion where long distance traffic is fast, while changing
between highways or railways requires time consum-
ing inner-city travel.

This augmenting problem has been studied by
Farshi et al. [2] with respect to the dilation (or:
stretch factor, spanning ratio) of a network. Their
problem differs considerably from ours. For example,
the geometric path P over n vertices shown in Fig-
ure 1 is of dilation 2/ε, attained by vertices v1 and v3,
while its routing cost

2
∑

1≤i<j≤n

(j − i) =
(n − 1)n(n + 1)

6

does not depend on the geometric embedding of P .
With one extra edge available, we would minimize
the dilation of P by inserting it between v1 and v3,
whereas the routing cost of P is minimized by adding

∗Department of Computer Science I, University of Bonn
†Karlsruhe Institute of Technology (KIT), Institute for The-

oretical Informatics
‡Institute of Information Science, Academia Sinica

an edge connecting v := vn/5 to v′ := v4n/5; the proof
of optimality requires lenghty calculations. Not only
the paths between vertices to the left of v and to the
right of v′ become shorter; vertices between v and
v′ also benefit from the shortcut edge, as Figure 1
indicates.

v1

v2

v3 vn

e
e′

P
v v′

1 1

ε

Figure 1: Inserting edge e minimizes the dilation,
while e′ minimizes the routing cost of path P .

In this note we consider the following problem. We
are given a path P = (v1, v2, . . . , vn) all of whose edges
(vi, vi+1) are directed from left to right. Each vertex
vi is assigned a weight wi > 0, reflecting the number
of residents of city vi. We want to decrease the routing
cost

r :=
∑

1≤i<j≤n

wi(j − i)wj

of P by adding one more edge (vk, vl) directed from vk

to vl, choosing k < l such that the decrease in routing
cost is as large as possible; compare Figure 2.

As compared to the undirected case shown in Fig-
ure 1, the situation has become simpler in that only
vertex pairs on opposite sides of the shortcut edge
can benefit from the extra edge. Thus, the decrease
in routing cost effected by adding a directed edge from
vk to vl equals

ρ(k, l) :=

 ∑
1≤i≤k

wi

 (l − k − 1)

 ∑
l≤i≤n

wi

 , (1)

because l− k edges between vk and vl can be avoided
by using edge (vk, vl).

On the other hand, introducing weights has made
the minimization problem non-trivial. In fact, the
decrease function ρ(k, l) can have multiple local max-
ima. (An example is given by the path with weights
(90, 10, 100, 1, 100, 1, 1, 1, 100, 1, 100, 10, 90) for which
the shortcut edges (v3, v11) and (v5, v9) are locally op-
timal.) Quite obviously, the optimum shortcut edge
could be determined by inspecting the O(n2) many
candidates (vk, vl) where 1 ≤ k < l ≤ n.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

11

27th European Workshop on Computational Geometry, 2011

w1 w2 wk wnwl

vk vl

Figure 2: Weights wi represent the population size of
city vi.

In this note, we are going to prove a sharper result.

Theorem 1 The optimum shortcut edge for a di-
rected, weighted path of n vertices can be determined
in time O(n).

2 Reduction to Pseudo-Line Arrangements

Let P denote a directed path of n vertices v1, . . . vn

with positive weights w1, . . . , wn. Considering For-
mula 1 we define

Ak :=
k∑

i=1

wi and Bl :=
n∑

i=l

wi

for k = 1, . . . , n. Moreover, let

fl(k) := Abkc(l − k − 1)Bl

be a function of a real variable k. In our optimization
problem, only values k < l are meaningful, but there is
no harm in ignoring this constraint. Function fl(k) is
piecewise linear, with discontinuities at integer values
of k. Here, fl(k) = ρ(k, l) holds.

Lemma 2 Let 1 ≤ l1 < l2 ≤ n be fixed.
(i) There exists at most one real value k ∈ [1, n] where
fl1(k) = fl2(k) holds. If so, we have fl1(k) < fl2(k)
to the right of k.
(ii) If no such value exist, fl1(k) < fl2(k) holds over
the whole interval [1, n],

Proof. Let us consider

fl2(k) − fl1(k) =
Abkc · ((l2 − 1)Bl2 − (l1 − 1)Bl1 + k(Bl1 − Bl2)). (2)

Because of l1 < l2 we have Bl1 > Bl2 . Moreover,
Abkc ≤ Abk′c holds if k < k′. Thus, Expression 2 is
strictly monotonically increasing in k, which proves
Claim (i). If Expression 2 never attains the value 0,
then the order relation between fl1(k) and fl2(k) is
the same all over [1, n]. If we set k := l2 − 1 ∈ [1, n]
we obtain fl1(k) < 0 = fl2(k), which completes the
proof of Claim (ii). �

The set of graphs of functions fl(k), where 1 ≤ l ≤
n, is called a family of pseudo-lines over the interval
[1, n] because any two of them have at most one point

of intersection, just as proper lines would. Arrange-
ments of pseudo-lines have been extensively studied;
see Goodman [4], for example. We can solve our opti-
mization problem by constructing the upper envelope
of this pseudo-line arrangement, that is, the graph G
of the maximum function

f(k) := max{fl(k); 1 ≤ l ≤ n}. (3)

Each function fl(k) contributes at most one segment
to G. Indeed, let us assume that some fl(k) con-
tributed two segments to G. Then a segment of some
fl′(k), where l′ 6= l, must occur in between. But for
this to happen, fl(k) and fl′(k) must intersect twice—
in contradiction to Lemma 2.

This is a special, and in fact the most simple, case
of a Davenport-Schinzel sequence. In general, if any
two of n function graphs over some interval inter-
sect at most s times, their envelope is of complex-
ity O(λs(n)), with a non-trivial, slightly super-linear
function λs; see the monograph by Sharir and Agar-
wal [5]. There is a simple algorithm that allows the
lower (or upper) envelope to be constructed in time
O(λs(n) log n), by divide-and-conquer. Here one as-
sumes that elementary operations, like computing an
intersection of two functions, can be carried out in
constant time. In our case, this is true. Moreover,
s = 1 and λ1(n) = n hold.

These facts give us a first improvement over the
trivial O(n2) algorithm mentioned in Section 1.
We can construct the upper envelope, G, in time
O(n log n). Then we perform one pass over G and
evaluate f(k) at all integer values of k; this takes
time O(n). If the maximum of these values is attained
within a segment of fl(k) in G, then the shortcut edge
from vk to vl yields a maximum reduction in routing
cost.

3 Computing the Envelope in Linear Time

To improve on the O(n log n) upper time bound just
mentioned, we will make use of the fact that the order-
ing of the functions fl(k) “far to the right” is known
to us. Indeed, for each l ≤ n − 1, Expression 2 yields

fl+1(n) − fl(n) = An(Bl+1 + (n + 1 − l)wl) > 0,

so that we obtain

f1(n) < f2(n) < . . . < fn(n).

We prove a general result covering this situation.

Theorem 3 Let f1, . . . , fn form an arrangement A
of pseudo-lines over interval I = [a, b]. If the order of
values fi(b) is known, the upper envelope of A can be
computed in time O(n).

12

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Proof. We proceed from right to left and process the
curves fj in order of decreasing indices. In a stack,
S, we store the part of the upper envelope that would
result if no further curves existed; see Figure 3. Ini-
tially, S contains only fn.

When processing fj , we compute the intersection,
w, of fj with the top element, fk, of S. If w does not
exist, or lies to the left of interval I = [a, b], we ignore
fj , and start processing fj−1.

Otherwise, let v be the intersection of the two top-
most curves in S. If w lies to the left of v, or if no
v exists because the stack contains only one element,
fk = fn, we push fj on the stack, and start process-
ing fj−1. But if w lies to the right of v, we pop fk

from the stack and continue processing fj . This pop

v

w

w

fn

fn−1

fl

fk

fj

a b

S

top(S)

Figure 3: Constructing the upper envelope.

operation is justified because to the left of w, curve
fk is dominated by fj and can, therefore, not con-
tribute to the upper envelope. With this observation,
the correctness of our algorithm is evident.

The linear run time bound can be shown as follows.
During each pass through the loop described above,
we (i) ignore fj , or (ii) push fj , or (iii) we pop fk.
Whenever (i) or (ii) occurs, we decrease the index j
of the function currently processed; thus, (i) and (ii)
happen at most n times. If there are only n push op-
erations, there can be no more than n pop operations
either, because each pop is sucessful. Thus, the loop
is carried out at most O(n) times, which proves the
linear time bound. Upon termination, stack S con-
tains the segments of the upper envelope, with the
leftmost segment on top. �

This completes the proof of Theorem 1. Finally, we
construct the upper envelope in linear time and find
its maximum among all integer arguments in [1, n], as
explained at the end of Section 2.

Applied to strict lines there is an interesting re-
lation to a variant of Graham’s scan algorithm for
computing the convex hull of a set of sorted points.
If Andrew’s monotone chain method [1] is translated
into the dual space, we obtain the above algorithm for
a set of strict lines sorted by slope.

4 Extensions

The most simple extension of a one-way path might
be a star-shaped directed network as depicted in Fig-
ure 4. For a center vertex v we have s incoming path
of complexity (number of nodes) mi for i = 1, . . . , s
and r outgoing paths of complexity nj for j = 1, . . . , r,
as depicted in Figure 4. There are three possible lo-
cations for a shortut. The shortcut might be placed
fully inside an incoming path, fully inside an outgo-
ing path or it might connect an incoming path with
an outgoing path. For the first two cases we can ap-

Figure 4: A directed star network with center v, 2
incoming and 4 outgoing paths of different length.

ply the same idea as presented above. We only have
to sum up all weights of the incoming paths and all
weights of the outgoing paths at v in order to adapt
the functions fl(k) properly. Then we let our algo-
rithm run on every path and obtain a total running
time of

∑s
i=1 mi +

∑r
j=1 nj which is optimal.

So the remaining task is to compute the best short-
cut connecting an incoming with an outgoing path.
In a direct way we could apply our algorithm to
all s × r alternatives which results in running time∑

i,j(mi + nj), obviously this is quadratic. We can
improve on this.

First, let us assume that there is only a single in-
coming path with complexity m. Applying the algo-
rithm for all r outgoing paths using the same incoming
path r times gives overall running time

∑r
j=1 nj+r·m.

For a set of s incoming paths we intuitively will collect
all incoming paths in a single incoming path of length
max mi. Then the running time for computing the
best shortcut between an incoming and an outgoing
path is given by

∑r
j=1 nj + r · max mi.

The idea depends on the special nature of the
functions fl(k). Within the algorithm of Section 3
we have to compute intersections in order to com-
pute the upper envelope. In our special case we
rather have computed intersection indices. Comput-
ing an intersection index means that we have to find
out where fl1(k) − fl2(k) changes its sign for some
1 ≤ k < l1 < l2 ≤ n. From Equation (2) we ob-
tain that fl1(k) − fl2(k) for some index k is given by
Ak ·((l2−1+k)Bl2−(l1−1+k)Bl1). Fortunately, the
sign of this expression is independent from Ak since

13

27th European Workshop on Computational Geometry, 2011

Ak is always positive. Furthermore (l2 − 1 + k) and
(l2 − 1 + k) are only path distances from vl1 and vl2

to vertex vk, respectively. This means that knowing
the exact value of the indices l1 and l2 and k with
respect to n is not necessary for computing intersec-
tions. Therefore we can apply the above algorithm for
an outgoing path (starting from the end and ending
at v) without knowing the exact path length n of the
path in the beginning and without knowing the exact
values Ak to the left. Intersection indices are com-
puted as path distances relative to the given position
in the path. In principle we rather compute functions
fvl

(k) instead of functions fl(k) where k is the path
distance of a directed path from some vertex w to vl.
The intersection indices computed for a single outgo-
ing path are the same for all incoming paths.

Of course, at the end we have to compute the en-
velopes to obtain the maximum. At this point we have
to make use of the values Ak. A collected incoming
path will simply represent the maximum values Ak

for a given path distance from v. The construction
of the single incoming path works as follows. Since
we have to compare all incoming paths, we have to be
independent from indices. Let vk be a vertex of an in-
coming path. Instead of Ak we will denote the sum of
weights arriving at vk by Avk

. For any path distance
d we compute the vertex w(d) of an incoming path
with path distance d to v that has maximum weight
Aw(d) among all such vertices of the same path dis-
tance d from v on all incoming paths. It is easy to see
that we can compute these vertices in overall running
time

∑s
i=1 mi. Now the collected incoming path is

given by vertices w(max mi), w(max mi−1), . . . , w(1)
in this order with corresponding weight sums Aw(k).

Theorem 4 Given a star-shaped directed network
with s incoming paths of complexity ni for i =
1, . . . , s and r outgoing paths of complexity mj for
j = 1, . . . , r. The optimal shortcut can be computed
in

∑s
i=1 mi +

∑r
j=1 nj + r · max mi time.

Finally, we consider the undirected case of a single
path. As already depicted in Figure 1 there are differ-
ent parts of the path that might profit from the short-
cut between v and v′ or vk and vl. A corresponding
function φ(k, l) for indices l < k becomes more com-
plicated. Two vertices profit, if the path length along
the shortcut is smaller than the original path length.
We collect the benefit of a shortcut in the following
functions due to the vertices that benefit.

First formula (from left to right as before):(∑k
i=1 wi

)
×

(∑n
j=l wj

)
× (l − k − 1) (4)

Second formula (from left to inner right):(∑k
i=1 wi

)
×

(∑l−1

j=d l+k
2 +1e wj × (2j − l − k − 1)

)
(5)

Third formula (from right to inner left):

(
∑n

i=l wi) ×
(∑b l+k

2 −1c
j=k+1 wj × (l + k − 2j − 1)

)
(6)

Fourth formula (from inner right to inner left):

l−1∑
i=d l+k

2 +1e+1

wi ×

(∑i−d l+k
2 +1e+k

j=k+1 wj × (k − l + 2i − 2j − 1)
)

(7)

Now let φ(k, l) be the sum of the function (4),(5),(6)
and (7). It can be shown that one can choose weights
so that two functions φ(k, l1) and φ(k, l2) will have
more than one intersection. This means that the key
idea of Theorem 1 does not apply directly to undi-
rected paths. Note, that the best shortcut can be
easily computed in O(n2) time anyway.

5 Conclusion

We have shown how to find an optimum shortcut in
an oriented path with weighted vertices, by efficiently
constructing upper envelopes of pseudo-lines. In case
of a star-shaped directed network the algorithm can
be applied also. Natural questions are if one can find
efficient algorithms for more general graph classes;
even the case of undirected paths is open.

Acknowledgements: We would like to thank an
anonymous referee for pointing out some interrelation
to a variant of Graham’s scan; see Section 3.

References

[1] A. M. Andrew. Another efficient algorithm for convex
hulls in two dimensions. Inform. Process. Lett. 9(5),
pp 216–219, 1979

[2] M. Farshi, P. Giannopoulos, and J. Gudmundsson.
Improving the stretch factor of a geometric graph by
edge augmentation. SIAM Journal on Computing,
38(1), pp. 226–240, 2008.

[3] M. Fischetti, G. Lancia, and P. Serafini. Exact Algo-
rithms for Minimum Routing Cost Trees. Networks
39(3), pp. 161–173, 2002.

[4] J. E. Goodman. Pseudoline Arrangements. In J. E.
Goodman and J. ORourke (eds.) Handbook of Comb.
and Computat. Geometry, CRC Press, 1997.

[5] M. Sharir and P. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cam-
bridge University Press, 1995.

[6] B. Ye Wu and K.-M. Chao. Spanning trees and op-
timization problems. Chapman & Hall/CRC, 2004.

[7] Wu, Bang Ye and Lancia. A Polynomial-Time
Approximation Scheme for Minimum Routing Cost
Spanning Trees. SIAM J. Comput. 29(3), pp. 761–
778, 2000.

14

