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Abstract

We consider the wireless localization problem. Given
a simple polygon P , place and orient guards each of
which broadcasts a unique key within a fixed angular
range. At any point in the plane one must be able
to tell whether or not one is located inside P only by
looking at the set of keys received. In other words, the
interior of the polygon must be described by a mono-
tone Boolean formula composed from the guards. We
improve the upper bound for the vertex guard prob-
lem where guards may be placed on vertices of P only
and show that the maximum number of vertex guards
needed to describe any simple polygon on n vertices
is at most 8

9n.

1 Wireless Localization

Art gallery problems are a classic topic in discrete and
computational geometry. A new direction has been
introduced by Eppstein, Goodrich, and Sitchinava [4].
They propose to modify the concept of visibility by
not considering the edges of the polygon/gallery as
blocking. This changes the problem drastically. The
motivation for this model stems from communication
in wireless networks where the signals are not blocked
by walls, either. For illustration, suppose you run a
café (modeled as a simple polygon P ) and you want to
provide wireless internet access. But you do not want
the whole neighborhood to use your infrastructure.
Instead, Internet access should be limited to those
people who are located within the café. To achieve
this, you can install a certain number of devices, let
us call them guards, each of which broadcasts a unique
(secret) key in an arbitrary but fixed angular range.
The goal is to place guards and adjust their angles in
such a way that everybody who is inside the café can
prove this fact just by naming the keys received and
nobody who is outside the café can provide such a
proof. Formally this means that P must be described
by a monotone Boolean formula over the keys, that
is, a formula using the operators And and Or only,
negation is not allowed. It is convenient to model a
guard as a subset of the plane, namely the area where
the broadcast from this guard can be received. This
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area can be described as an intersection or union of
at most two halfplanes. Using this notation, the poly-
gon P is to be described by a combination of the op-
erations union and intersection over the guards. For
example, the polygon P above can be described by
(a ∪ b) ∩ c ∩ d.

Natural guards. Natural locations for guards are the
vertices and edges of P . A guard which is placed at
a vertex of P is called a vertex guard. A vertex guard
is natural if it covers exactly the interior angle of its
vertex. Natural vertex guards alone do not always
suffice [4]. A guard placed anywhere on the line given
by an edge of P and broadcasting within an angle
of π to the inner side of the edge is called a nat-
ural edge guard. Dobkin, Guibas, Hershberger, and
Snoeyink [3] showed that n natural edge guards are
sufficient for any simple polygon with n edges. Using
both natural vertex guards and natural edge guards,
n− 2 guards are sufficient and can be necessary [1].

Vertex guards. Using a different approach, Eppstein
et al. [4] proved that any simple polygon with n edges
can be guarded using at most n− 2 (general, that is,
not necessarily natural) vertex guards. In this work,
we improve the upper bound to b 8n−6

9 c for n ≥ 4.
This bound is still not known to be tight. Damian,
Flatland, O’Rourke, and Ramaswami [2] describe a
family of simple polygons with n edges which require
at least b2n/3c − 1 vertex guards.

General guards. In the most general setting, we do
not have any restriction on the placement and the
angles of guards. At the moment, the best known
upper bound is b 4n−2

5 c, which is not known to be
tight, the best lower bound being d 3n−4

5 e [1].

The different problems and results are summarized
in the following table. The mark ∗ indicates the result
of this paper.

guards lower bound upper bound
natural n− 2 [1] n− 2 [3]
vertex b2n/3c − 1 [2] b(8n− 6)/9c [∗]
general d(3n− 4)/5e [1] b(4n− 2)/5c [1]

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Upper Bound for Vertex Guards

We use the notion of a polygonal halfplane H which is
a topological halfplane bounded by a simple bi-infinite
polygonal chain C = (e1, . . . , en), for a positive integer
n. For n = 1, the only edge e1 is a line and the
polygonal halfplane is a halfplane. For n = 2, e1 and
e2 are rays which share a common source but are not
collinear. For n ≥ 3, e1 and en are rays, ei is a line
segment, for 1 < i < n, and ei and ej , for 1 ≤ i < j ≤
n, do not intersect unless j = i+1 in which case they
share an endpoint. For brevity we use the term chain
in place of simple bi-infinite polygonal chain. Let vi,
for 1 ≤ i < n, denote the vertex of C incident to ei

and ei+1, V (C) := {v1, . . . , vn−1}. For 2 ≤ i ≤ n− 1,
let e+

i be the ray obtained from ei by extending the
segment linearly beyond vi. Similarly e−i refers to
the ray obtained from ei by extending the segment
linearly beyond vi−1. For a polygonal halfplane H
define γ(H) to be the minimum integer k such that
there exists a guarding G(H) for H using k vertex
guards. Similarly, for a natural number n, denote
by γ(n) the maximum number γ(H) such that H is
bounded by a chain with n edges. Obviously, γ(1) =
γ(2) = 1. Observe that any guarding for H can be
transformed into a guarding for the complement H
using the same number of guards: Use de Morgan’s
rules and invert all guards (keep their location but
flip the angle to the complement with respect to 2π).
Therefore, we can define γ(C) = γ(H) = γ(H).

Theorem 1 For any n ≥ 2, γ(n) ≤ b 8n−3
9 c.

Proof. The base cases γ(1) = γ(2) = 1, γ(3) = 2,
γ(4) = 3, γ(5) = 4 and γ(6) = 5 follow from the
observation that a chain can always be guarded with
n − 1 natural guards [1]. Now let H be a polygonal
halfplane bounded by an oriented polygonal chain C
with n ≥ 7 edges such that the interior of H lies to the
right of C. Let S := V (conv(V (C))) be the vertices
of the convex hull of V (C), that is, the vertices of C
that are extremal. The basic idea is to split C at a
vertex vi ∈ S into two chains C1 = (e1, . . . , ei−1, e

+
i )

and C2 = (e−i+1, ei+2, . . . , en). If the “new” rays e+
i

and e−i+1 do not intersect the “old” rays e1 and en,
we can express H as the intersection or union of the
two polygonal halfplanes H1 and H2 bounded by C1

and C2 depending on whether vi is convex or reflex.
Assume that the angle between e1 and en is convex
(else, consider H instead of H) and think of C as
going from the left to the right (thus H being below
C). In other words, e1 and en are assumed to go from
left to right, e1 having positive slope and en having
smaller slope than e1. Now look at the convex hull
conv(H) of H. There must be at least one vertex vi

in S which lies on the boundary ∂conv(H). Such a
vertex is for sure a good splitting vertex in the above
sense. If 2 ≤ i ≤ n − 2, we split C at vi as explained

into two chains C1 := (e1, . . . , ei−1, e
+
i ) and C2 :=

(e−i+1, ei+2, . . . , en) and get a guarding G(C1)∩G(C2),
where G(Ci) denotes the guarding of Ci we get by
induction, see Figure 1. Therefore γ(C) ≤ γ(i) +
γ(n− i) ≤ b 8i−3

9 c+ b 8(n−i)−3
9 c ≤ b 8n−6

9 c ≤ b 8n−3
9 c.

C1

C2

vi

e+
ie−i+1

conv(H)

H

Figure 1: Splitting at a convex hull vertex.

If there is no vertex on ∂conv(H) with index 2 ≤ i ≤
n− 2, we first consider the case that S ∩ ∂conv(H) =
{v1, vn−1}. If there is a vertex vi ∈ S with 3 ≤ i ≤ n−
3, split C at v1, vi and vn−1: Put a natural edge guard
g1 onto e1, a natural edge guard g2 onto en and define
C1 := (e−2 , . . . , e+

i ), C2 := (e−i+1, . . . , e
+
n−1). (We can

place the natural edge guards on the incident vertices,
hence the natural edge guards can be realized as (non-
natural) vertex guards.) Then, a guarding for C can
be obtained as g1∩g2∩ (G(C1)∪G(C2)), see Figure 2.
This implies γ(C) ≤ 2 + γ(i − 1) + γ(n − i − 1) ≤
2 + b 8i−11

9 c+ b 8(n−i)−11
9 c ≤ b 8n−6

9 c.

vi

v1

vn−1

g1

g2
C1

C2

Figure 2: v1 and vn−1 are the only vertices on h(C).

If S = {v1, v2, vn−2, vn−1}, consider S′ :=
V (conv{v2, . . . , vn−2}). Beside v2 and vn−2, there
must be a third vertex vj ∈ S′, without loss of general-
ity 4 ≤ j ≤ n−3 (if j = 3, reflect C). If e−3 does not in-
tersect en, put a natural edge guard g1 onto e1, a ver-
tex guard g2 onto v2 with the right ray covering e2 and
its other ray parallel to en and a natural vertex guard
g3 onto vn−1 and define C1 := (e−3 , . . . , e+

j ) and C2 :=
(e−j+1, ej+2, . . . , en−2, r) where r is the ray starting at
vn−2 in the direction of en. See Figure 3. Then we
get a guarding as g1 ∩ (g2 ∪ (G(C1) ∩ G(C2)) ∪ g3)
and conclude γ(C) ≤ 3 + γ(j − 2) + γ(n − j − 1) ≤
3 + b 8(j−2)−3

9 c+ b 8(n−j−1)−3
9 c ≤ b 8n−3

9 c. If e−3 inter-
sects en, put a natural vertex guard g1 onto v1, and an
edge guard g2 onto en and define C ′ := (e−3 , . . . , e+

n−1).
See Figure 3. We obtain a guarding (g1 ∪G(C ′))∩ g2.

If S consists of 3 vertices only and there is no vi ∈ S
with 3 ≤ i ≤ n− 3, assume without loss of generality
that v2 ∈ S (if vn−2 is the only vertex in S beside
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vj vj
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en en

Figure 3: S = {v1, v2, vn−2, vn−1}

v1 and vn−1, reflect C). In this case, define S′ :=
V (conv({v2, . . . , vn−1})). For sure, v2, vn−1 ∈ S′ but
there must be a third vertex vj ∈ S′, see Figure 4.

v2

v1

vn−1vj

C1

C2

Figure 4: v1, v2, and vn−1 are the only vertices in S.

If 4 ≤ j ≤ n − 3, put a edge guards onto e1, e2,
and en, and split the remaining chain at vj . If v3 is
the only new vertex in S′, put a natural vertex guard
g1 onto v1, and a non-natural vertex guard g2 onto
v2 covering e3 with its left ray and with the right
ray parallel to e1, and an edge guard g3 onto en: A
guarding can be obtained as g3 ∩ (g1 ∪ (g2 ∩ G(C ′)))
where C ′ = (e−4 , . . . , e+

n−1). See Figure 5.

v3

e1

vn−1

g1

g2

g3C′

v1

v2 en

Figure 5: S′ = {vn−1, v3, v2}.

If vn−2 is the only new vertex, define C ′ =
(e−3 , . . . , e+

n−2), put a natural vertex guard g3 onto
vn−1. If e−3 does not intersects en, put an edge guard
g1 onto e1 and a vertex guard g2 onto v2 covering
e2 with its right ray and with its left ray parallel
to en. We get a guarding g1 ∩ (g2 ∪ (G(C ′) ∩ g3)).
If e−3 intersects en, put a natural vertex guard g1

onto v1 and an edge guard g2 onto en and observe
H = g2 ∩ (g1 ∪ (G(C ′) ∩ g3)). We conclude γ(C) ≤
3 + γ(n− 4) ≤ 3 + b 8n−32−3

9 c ≤ b 8n−8
9 c, see Figure 6.

Finally, assume there is only one vertex on
∂conv(H), which is either v1 or vn−1. We assume
without loss of generality that it is v1. Beside v1,
which for sure belongs to S, there must be at least
two more vertices in S. Let vi be the vertex of S
which is extremal to the right of en. If 3 ≤ i ≤ n− 2,
split C into three parts cutting it at v1 and vi. Then,
we get a guarding for C as g∩ (G(C1)∪G(C2)), where

e−3

en

e−3

g1
g2

g3

en

g1

g2

g3

vn−2 vn−2

vn−1 vn−1

v2

Figure 6: S′ = {vn−1, vn−2, v2}.

g is a natural edge guard on e1, C1 = (e−2 , . . . , e+
i ),

and C2 = (ei+1−, . . . , en), see Figure 7.

v1

vi

g

C1

C2e1

Figure 7: Split at the extremal vertex below en.

If i = 2, define S′ := V (conv({v2, . . . , vn−1})). Let
vj be the vertex of S′ which is extremal in the opposite
direction, that is, to the left of en. If 4 ≤ j ≤ n − 2,
we put natural edge guards g1 and g2 onto e1 and e2

and split the rest at vj into two chains C1 and C2, see
Figure 8. Then H = g1 ∩ (g2 ∪ (G(C1) ∩ G(C2))).

v1

v2

vj

C2
C1

g1 g2

Figure 8: The extremal vertex in S below en is v2.

If j = 3, we put a natural vertex guard onto v1,
a guard onto v2 with its left ray covering e3 and the
right parallel to e1. Then, we get γ(C) ≤ 2 + γ(n −
3) ≤ 2 + b 8n−27

9 c ≤ b 8n−9
9 c. If j = n − 1, that is, if

there is no vertex above en except v1, take any vertex
vs ∈ S′, 3 ≤ s ≤ n − 2. If 4 ≤ s ≤ n − 3, put
an edge guard g1 onto e1 and an edge guard g2 onto
e2 and an edge guard g3 onto en and define C1 =
(e−3 , . . . , e+

s ), C2 := (e−s+1, . . . , en−1), then we get a
guarding g1 ∩ (g2 ∪ (g3 ∩ (G(C1) ∪ G(C2)))) (or g1 ∩
(g2∪(g3∩G(C1)∩G(C2))) if vs is convex), see Figure 9.
If s = 3, put 3 guards explicitly depending on whether
v3 is reflex or convex and cover the remaining chain
C ′ = (e−4 , . . . , e+

n−1) recursively, see Figure 10. If s =
n − 2, we are in a situation similar to one of those
shown in Figure 3 or 6 and proceed accordingly.

If i = n − 1, that is, if there is no vertex of S
below en, distinguish two cases: Either there is a con-
vex vertex in S between vn−1 and v1, or there is no
such vertex. If there is a convex vertex vj ∈ S, with
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Figure 9: There is no vertex in S′ above en.
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Figure 10: S′ = {v2, v3, vn−1}.

2 ≤ j ≤ n − 3, put an edge guard onto en and split
at vj , see Figure 11. If j = 2 or j = n − 1 pro-
ceed as above but now removing v1 or vn−1, respec-
tively, defining S′ := V (conv({v2, . . . , vn−1})) (S′ :=
V (conv({v1, . . . , vn−3})), respectively), see Figure 12.

e1

vn−1

vj

en

C1

C2

Figure 11: There is a convex vertex vj ∈ S.

If S = {v1, v2, vn−1} and v2 is reflex, let S′ =
V (conv{v2, ..., vn−1}) and look for a splitting vertex in
S′. If there is vj ∈ S′, 4 ≤ j ≤ n− 3, put edge guards
onto e1, e2 and en and split the rest at j, see Fig-
ure 13. If S′ = {v2, vn−1, v3} or S′ = {v2, vn−1, v3},
proceed as shown in Figure 14. �

Lemma 2 (Lemma 4 in [1]) A simple polygon P
on n ≥ 4 vertices is the intersection of two polygonal
halfplanes both having at least two edges.

Corollary 3 A simple polygon P on n ≥ 4 edges can
be guarded with at most b(8n− 6)/9c vertex guards.
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