
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Kinetic Red-blue Minimum Separating Circle

Yam Ki Cheung, Ovidiu Daescu, and Marko Zivanic
Department of Computer Science
The University of Texas at Dallas

Richardson, TX USA
Email: {ykcheung,daescu,mxz052000}@utdallas.edu

Figure 1: Minimum red enclosing circle (dashed) and
red-blue separating circle (solid).

1 Introduction

Let R and B be two finite sets of points in R2, of
size |R| = n and |B| = m, respectively. We refer
to R as the set of red points and to B as the set
of blue points. In [4] the authors define a constrained
version of the circular separability problem, called the
minimum separating circle problem, as follows: Let
S denote the set of circles such that each circle in
S encloses all points in R while having the smallest
number of points of B in its interior. The goal is
to find the smallest circle in S, called the minimum
separating circle and denoted by CB(R). See Figure 1
for an illustration.

The problem has applications in military planning.
It can be used to determine the best location to deploy
an explosive and the amount needed so that all enemy
forces, represented by red points, will be impacted
while minimizing civilian casulties (blue points). It
is also applicable in determining the best set-up of
communication devices such that all red devices stay
connected and as few blue devices as possible can in-
tercept their communication. Two algorithms for the
static version of this problem have been proposed by
Bitner et al. [4].

In practice, however, it is possible that not all
points (targets) are stationary. In this paper, we
study a kinetic version of the red-blue minimum sep-
arating circle problem, in which all points are station-

ary except one red point, which moves along a linear
trajectory with constant velocity. We want to find the
locus of the minimum separating circle over a period
of time.

For the case when the two point sets can be sep-
arated, Fisk [6] gave a quadratic time and space al-
gorithm to compute the minimum separating circle.
The result was later improved to optimal linear time
and space by O’Rourke et. al. [8].

To the best of our knowledge the kinetic version of
the minimum separating circle problem has not been
studied in the past, but there is a significant number
of publications on related topics. Atallah [1] intro-
duced the concept of kinetic computational geometry
in a seminal paper on this topic. Basch et al. [3] in-
troduced a set of kinetic data structures that can be
used to maintain the convex hull of a moving set of
points. Ross [10] gived an algorithm for maintaining
the nearest-point Voronoi diagram of a kinetic data
set. He presented an update algorithm for the topo-
logical structure of the Voronoi diagram of moving
points, using O(log n) time for each change. Demaine
et al. [5] presented a kinetic data structure that calcu-
lates the minimum spanning circle for a moving set of
points. Banik et al. [2] solved the minimum enclosing
circle problem of a fixed set of points and one mov-
ing point. Their algorithm computes the locus of the
center of the minimum enclosing circle in linear time.
Rahmati et al. [9] presented a kinetic data structure
for the maintenance of the minimum spanning tree on
a set of moving points in R2.

2 Preliminaries

We start by briefly discussing an algorithm proposed
by Bitner et al. [4] for the static version of the min-
imum separating circle problem. The algorithm is
based on a sweep procedure on the edges of the far-
thest neighbor Voronoi diagram FV D(R) of R.

Lemma 1 [4] The smallest separating circle must
pass through at least two points from R.

It follows that the minimum separating circle is
either the smallest enclosing circle of R, which can
be found in linear time [7], or a circle which passes

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

193

27th European Workshop on Computational Geometry, 2011

Figure 2: An event point on edge eij .

through two points from R and one point from B.
Thus, the center of a minimum separating circle lies
on an edge of FV D(R).

Following Lemma 1, Bitner et al. [4] proposed a
sweep algorithm for computing the minimum sepa-
rating circle.

Consider a Voronoi edge eij , defined by two red
points ri and rj . The sweep procedure on eij is ini-
tialized by constructing an enclosing circle C of R
which passes through ri and rj and has the smallest
possible radius. This happens at one endpoint of eij .
Let c ∈ eij be the center of C. C is grown by sweeping
c along eij and keeping ri and rj on the circumference
of C.

A point E ∈ eij is an event point if, when c sweeps
through E, the circle C sweeps through a blue point
(see Figure 2 for an illustration). The number of blue
points enclosed by C is updated at each event point.
The sweep procedure on eij terminates when the other
endpoint of eij is reached. To total number of event
points over FV D(R) is O(mn).

Lemma 2 [4] A point from B defines at most one exit
event point on FV D(R), and such exit event point
can be found in O(log n) time.

3 The minimum separating circle with one mobile
red point

In this section, we study the minimum separating cir-
cle problem for two point sets R and B, such that all
points are stationary except one red point p, which is
moving along a linear trajectory with constant veloc-
ity. We show how to find the locus of the center of
the minimum separating circle CR(B) over a period
of time.

Following Lemma 2, at any time instant t, we can
find the minimum separating circle by computing the
FV D(R) and checking O(m) exit event points. To
find the locus of the minimum separating circle over a
period of time, it is sufficient to keep track of the
(trajectory of) the exit event associated with each
blue point as well as the number of blue points en-

closed by the corresponding candidate separating cir-
cle. Since one red point is mobile, the topology of
FV D(R) changes continuous. In order to keep track
of the trajectory of each exit event point, we define
the following four classes of events: 1) the appear-
ance/disappearance of a vertex on FV D(R); 2) the
appearance/disappearance of a vertex on the bound-
ary of the convex hull CH(R) of R; 3) the exit event
point associated with a blue point moves to another
Voronoi edge, and 4) the candidate separating circle
associated with an exit event point encloses/excludes
a blue point.

To avoid ambiguity, we refer to these four classes of
events as instant events, distinguishing from the event
points introduced in Section 2. Notice that case 1 and
case 2 instant events indicate that the topology of the
FV D(R) need to be updated. Case 3 instant events
indicate that the trajectory of some exit event point
changes, i.e. it moves along a different line. And case
4 indicates that the number of blue points enclosed by
some candidate separating circle needs to be updated.

Lemma 3 The locus of the center of the minimum
separating circle can be discontinuous.

Lemma 4 The locus of the center of the minimum
separating circle consists of a set of halflines, line seg-
ments, or points.

3.1 Case 1 instant events

These are time instants when a Voronoi edge appears
or disappears from FV D(R).

Figure 3: Update of Delaunay triangulation of four
points by edge swapping.

Lemma 5 There are at most O(n) instant events in
case 1. For each instant event, FV D(R) can be up-
dated in constant time.

Proof. Instead of working on FV D(R) directly, we
turn our attention to the dual graph of FV D(R), the
Delaunay triangulation DT (R).

The topology of DT (R) could change when four
red points, including the mobile red point p, on the
boundary of CH(R) are cocircular, or more specifi-
cally, when p enters/leaves a circle passing through
three fixed red points, and enclosing all fixed red

194

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

points in R. See Fig. 3. Observe that the cen-
ter of each such enclosing circle defines a vertex of
FV D(R/ p), so there are O(n) such enclosing cir-
cles. DT (R) can be updated in constant time by edge
swapping. ¤

3.2 Case 2 instant events

These are time instants when a vertex of CH(R) ap-
pears or disappears.

Lemma 6 There are O(n) instant events in case 2,
and each event can be identified in constant time.

Proof. Case 2 instant events occur when p passes
through the intersection between a line supporting
some edge of CH(R/ p) and the trajectory of p.
Hence, each instant event can be identified in con-
stant time. See Fig. 4 for an illustration

Figure 4: A vertex of CH(R) appears.

¤
3.3 Case 3 instant events

These are time instants when an exit event point
moves to another edge of FV D(R).

Lemma 7 Each case 3 instant event can be identified
in constant time.

Lemma 8 There are O(nm) instant events in case 3.

3.4 Case 4 instant events

These are time instants when the candidate sepa-
rating circle centering at an exit event point en-
closes/excludes a blue point.

Lemma 9 Each case 4 instant event can be found in
linear time.

Proof. Let e be a Voronoi edge defined by a fixed red
point ri and the mobile red point p and assume the
exit event point of a blue point b lies on e. The candi-
date separating circle centering at the exit event point
of b is the circumcircle of ri, p, and b. The locus of
the exit event point is a line segment supported by the
bisector between ri and b. We can keep track of the

number of blue points enclosed by the candidate sep-
arating circle by running a sweep algorithm along the
locus of the exit event point. This sweep algorithm
resembles the one used to compute the minimum sep-
arating circle of two sets of fixed points. The only
difference is that the center of the candidate separat-
ing circle moves along the bisector between ri and b
instead of a Voronoi edge.

The case 4 instant event is the moment when the
exit event point crosses an event point defined on the
bisector between ri and b. ¤

Lemma 10 There are at most O(m2n) case 4 instant
events.

Proof. As shown in Lemma 8, one exit event point
can traverse O(n) Voronoi edges. For each edge tra-
versed by the exit event point there can be O(m) event
points on the bisector between the blue point and the
fixed red point which defines the Voronoi edge. Each
event point corresponds to one case 4 instant event.
Hence, each exit event generates at most O(mn) case
4 instant events. ¤

3.5 Finding the locus of the center of the mini-
mum separating circle

First, we need to determine the exact trajectory of
each exit event point. If in a given time interval
[t1, t2], the exit event point of a blue point b lies on
a Voronoi edge defined by two fixed red points, the
exit event point is stationary. However, if the Voronoi
edge is defined by one fixed red point a, and the mo-
bile red point p, then the corresponding exit event
point is the intersection between the bisector B(a, b)
between a and b and the bisector B(b, p) between b
and p. The trajectory of p can be expressed paramet-
rically as x = vxt and y = mpvxt + qp, where vx is
a constant and mp and qp are the slope and the in-
tercept of the trajectory of p, respectively. It is not
difficult to show that the trajectory of the intersection
between B(a, b) and B(b, p) can be expressed as:

x =
t2 + c1t + c + 2

c3t + c4
,

y =
t2 + c1t + c + 2

c3t + c4
m′ + q′,

where c1, c2, c3, c4 are constants and m′ and q′ are
the slope and intercept of B(a, b), respectively.

Once the trajectory of the exit event point is known,
the function of the square radius of the correspond-
ing candidate separating circle is a function fb(t) of
constant degree.

Following Lemma 8, each exit event point cannot
cross more than O(n) Voronoi edges. For a time inter-
val [tinit, tend], fb(t) consists of O(n) pieces of curves

195

27th European Workshop on Computational Geometry, 2011

or horizontal line segments if the exit event point is
stationary.

Plotting all functions fb(t) for t ∈ [tinit, tend] and
b ∈ B on the same coordinate system gives us an
arrangement H of curves of complexity O(nm2), since
all functions are x-monotone and two such functions
intersect no more than O(n) times. H gives us the
relative size between all candidate circles over time.

However, we also need to consider the blue points
enclosed by the candidate circles. We further decom-
pose H by dividing each function fb(t) at every case 4
instant event to generated by b by introducing a ver-
tex at (to, fb(to)). As a result, each portion of fb(t)
on the new arrangement H ′ represents the square ra-
dius of the candidate circle for a time interval during
which the blue points enclosed by the circle remain
the same. The new arrangement H ′ has complexity
O(m2n). We call each portion of fb(t) on H ′ a simple
curve.

Let the blue point count of a simple curve on H ′ be
the number of blue points enclosed by the correspond-
ing candidate circle. The last step to compute the lo-
cus of the minimum separating circle is to extract the
lower envelope of curves with the lowest blue point
count. Each curve on the lower envelope gives us the
minimum separating circle for the interval spanned
by the curve, hence, the locus of the center of the
minimum separating circle.

We use a plane sweep to extract such lower enve-
lope. We sweep H ′ by a vertical line. At any moment,
the sweep line intersects with at most m functions
fb(t), for b ∈ B. Each function is indexed by its blue
point count at the current moment. We build a hash
table for functions intersected by the sweep line. For
each entry of the hash table, all functions are main-
tained in a balanced tree by the order intersected by
the sweep line. Note that we only have to update the
hash table at vertices of H ′. If two functions with the
same blue point count intersect, we need to exchange
their position in the corresponding tree. If the sweep
line crosses a vertex introduced by a case 4 instant
event, the blue point count of a function changes. The
corresponding function will be moved to the appropri-
ate entry of the hash table. It takes O(log m) time to
update the hash table for each instance.

Theorem 11 The locus of the center of the minimum
separating circle has complexity of O(m2n) and can
be found in O(m2n log m) time.

References

[1] Mikhail J. Atallah. Dynamic computational ge-
ometry (preliminary version). In FOCS, pages
92–99, 1983.

[2] Aritra Banik, Bhaswar B. Bhattacharya, and
Sandip Das. Minimum enclosing circle of a set of

fixed points and a mobile point. In Proceedings of
the Workshop on Algorithms and Computation,
New Delhi,India, 2011.

[3] Julien Basch, Leonidas J. Guibas, Craig Silver-
stein, and Li Zhang. A practical evaluation of
kinetic data structures. In Symposium on Com-
putational Geometry, pages 388–390, 1997.

[4] Steven Bitner, Yam Ki Cheung, and Ovidiu
Daescu. Minimum separating circle for bichro-
matic points in the plane. In ISVD, pages 50–55,
2010.

[5] Erik Demain, Sarah Einsenstat, Leonidas
Guibas, and Andre Schulz. Kinetic minimum
spanning circle. In Proceedings of the Fall Work-
shop on Computational Geometry, New York,
NY, USA, 2010.

[6] S. Fisk. Separating point sets by circles, and the
recognition of digital disks. In IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, pages 554–556, July 1986.

[7] N. Megiddo. Linear-time algorithms for linear
programming in R3 and related problems. SIAM
Journal on Computing, 12(4):759–776, 1983.

[8] J. O’Rourke, S. Kosaraju, and N. Megiddo. Com-
puting circular separability. Discrete Computa-
tional Geometry, 1:105–113, 1986.

[9] Zahed Rahmati and Alireza Zarei. Combinatorial
changes of euclidean minimum spanning tree of
moving points in the plane. In CCCG, pages 43–
45, 2010.

[10] Thomas Roos. Voronoi diagrams over dy-
namic scenes. Discrete Applied Mathematics,
43(3):243–259, 1993.

196

