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On some connection problems in straight-line segment arrangements*

Helmut Alt' Sergio Cabello®

Abstract

We study the complexity of some problems of the fol-
lowing type: Given a set of straight-line segments in
the plane and a set of cells in the induced arrange-
ment, compute the minimum number of segments one
needs to remove so that the cells become connected.
We show that the problems of connecting two cells and
connecting all cells are both NP-hard. We also discuss
several polynomial-time solvable and fixed-parameter
tractable cases.

1 Introduction

Let S be a set of straight-line segments in R? and
A(S) be the arrangement induced by S.

In the 2-CELLS-CONNECTION problem we are given
two points s, € R? and we want to compute a set
S’ € S of minimum possible size, with the property
that s and ¢t belong to the same cell of A(S \ 5’).
In other words, we want to compute an s-t path
that crosses the minimum number of segments of S
counted without multiplicities. The cost of a path is
the total number of segments crossed by it.

In the ALL-CELLS-CONNECTION problem we want
to compute a set S C S of minimum possible size
such that A(S\ S’) consists of one cell only.

Without loss of generality, we assume that every
segment in S intersects at least two other segments
and that both endpoints of a segment are intersection
points. We say that two segments cross if and only if
they intersect at a common interior point (a segment
crossing).

Results. We show that 2-CELLS-CONNECTION is
NP-hard even when no three segments intersect at a
point. When any three segments may intersect only at
a common endpoint, the problem is fixed-parameter
tractable with respect to the number of segment cross-
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ings. We also consider an application variant of the
problem where the segments lie inside a polygon with
holes P and have their endpoints on its boundary and
the s-t path must also stay inside P, and show it to
be fixed-parameter tractable with respect to the num-
ber of holes of P. On the other hand, we show that
ALL-CELLS-CONNECTION is NP-hard even if no three
segments intersect at a point and there are no segment
crossings.

Related work. Bereg and Kirkpatrick [1] studied the
problem of computing the so called barrier resilience
in wireless sensor networks, i.e., the minimum number
of disks whose removal connects two given cells in
an arrangement of unit disks (sensors), and gave a
3-approximation algorithm based on a shortest path
computation in the dual of the arrangement. The
complexity of the problem though remains open.

2 Connecting two cells

We show that 2-CELLS-CONNECTION is NP-hard by
a reduction from MAX-2-SAT, a well studied NP-
complete problem [6]: Given a propositional CNF for-
mula ® with m clauses on n variables and at most
two variables per clause, decide whether there exists
a truth assignment that satisfies at least k clauses,
for some given k € N, k < m. Let £ be the maximum
number of occurrences of a variable in ®. For sim-
plicity we can assume that ¢ < 3 since the restricted
version of MAX-2-SAT where any variable occurs in
at most 3 clauses is still NP-complete [9].

Using ® we construct an instance consisting of a set
of segments S and two points s and t as follows.

Abusing the terminology slightly, by a segment
we actually mean a set of identical single segments
stacked on top of each other. The cardinality of the
set is the weight of the segment. FEither all or none
of the single segments in the set can by crossed by a
path.

There are three different types of segments, 77, 715,
and T3, according to their weight, see Fig. 1. Seg-
ments of type T} have weight 1 (single or light seg-
ments), while segments of type Tb,T3 have weight
(m+1) and 18n(m-+1) respectively (heavy segments).

First, we construct a polygon, called the tunnel,
with heavy boundary segments of type T3, see Fig. 1.
There are 21 boundary segments in total. The tunnel
has a ‘zig-zag’ shape and can be seen as having 8 cor-
ridors, C4,...,Cs. It starts with Cy, the main corri-
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Figure 1: Variable chain and a possible path from s to
s’; a shaded area represents a set of £ single segments.

dor (at the center of the figure), which contains point
s, then it turns left to C5, then right, etc., gradually
turning around to C7 and then to the end corridor Cg
(at the top). The latter contains point ¢. The total
size of the tunnel is 21 - 18n(m + 1) = O(nm).

The rest of the construction will force any s-t path
of some particular cost (to be given shortly) to stay
always in the interior of the tunnel.

Each variable of ® is represented by a chain of seg-
ments, see Fig.1. The chain has 12 pieces and each
piece is separated from its neighbors by (or ends at,
when it is the last one) a ‘short’ heavy segment of
type T3, referred to as an obstacle; with the exception
of the two ends of the chain, all obstacles lie in the
interior of the tunnel. Each piece consists of:

(i) 2 chain boundary segments of type Ts; every end-
point of such a segment lies on an obstacle.
(ii) ¢ single segments (type T1).

It has 2(m + 1) 4 ¢ segments in total and it is said to
be crossed by a path if and only if all of its segments
are crossed.

Consider the example of the variable chain z; in
Fig. 1, and its part in the main corridor. From the
obstacle, the chain extends to the left towards corri-
dor C5 and to the right towards corridor C7. Consider
the right half of the chain. In the first piece all ¢ sin-
gle segments lie between the two boundary segments:
they start at the obstacle in the main corridor and
end at the obstacle in C'7. In the second piece, de-
noted by P/ (positive-right), all single segments start
at this latter obstacle. Some (in the example just
one) end inside the end corridor at intersection points
that represent clauses with a positive occurrence of
z;; in Fig. 1, these segments are drawn by dashed
lines, which can be made straight by stretching the
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Figure 2: All possible combinations of six pieces of a
variable chain crossed by a minimum-cost s-s’ path.

end corridor sufficiently. The rest continue down to
Cs, always lying between the boundary segments of
the piece, and end at an obstacle inside. The third,
fourth, and fifth piece are similar to the first one: all
single segments of a piece (represented by a shaded
area) lie between its respective boundary segments.
The chain makes three consecutive right turns, from
Cs to Cs, then to Cy4, and then to C3. In the last
piece, P! (positive-left), all single segments start at
an obstacle in C3. Again, some go up to the end cor-
ridor, to clauses with a positive occurrence of x;, while
the rest end at an obstacle outside the tunnel. Note
that any single segment may intersect a chain bound-
ary segment only outside the tunnel. The left half of
the chain is constructed in an analogous fashion. Its
second and sixth piece are denoted by N! (negative-
left) and N} (negative-right) respectively; some single
segments coming from these pieces go to clauses with
a negative occurrence of z;.

Each clause of ® is represented by an intersection of
two single segments inside the end corridor; see Fig. 3
for an example of the overall construction. Each seg-
ment corresponds to some literal x; or Z; in the clause:
in the first case the segment comes from either P/ or
P!, while in the second one it comes from either N
or N!. For the construction, these choices for a each
clause can be made arbitrarily, provided that one seg-
ment intersects the tunnel from the left side and the
other one from the right. In this way, the end corridor
is obstructed by m pairs of intersecting segments such
that any path from the intermediate point s’ to point
t staying inside the tunnel must intersect at least one
segment from each pair.

Observe that any minimum-cost path from s to s
that stays in the interior of the tunnel crosses only
6 pieces from each variable chain (and no obstacles),
where at least one piece from every two consecutive
ones is crossed; see Fig. 1 for an example of such a
path. There are 7 such possible sets of pieces, see
Fig. 2, and the choice is made independently for each
chain. Consider the two middle pieces, parts of which
lie in the main corridor. When only the left one is
crossed (first three sets), P/ is crossed as well, while
none of N}, NI is crossed: effectively, x; is set to true.
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Figure 3: Example of overall construction.

Symmetrically, when only the right piece is crossed
(next three sets), x; is set to false. The last set does
not correspond to a valid truth assignment. The total
cost for such a path is 6n(2(m + 1) + £).

Thus, for an s-t path to cost 6n(2(m + 1) + £) + k,
for some 0 < k < m, its subpath from s’ to ¢ in
the end corridor must cross at most k single segments
that have not been crossed before. This implies that
there are at least (m — k) clauses from each of which
at least one segment has been already crossed by the
s-s’ subpath. For such a clause, let u; € {z;,Z;} be
the literal that the crossed segment corresponds to.
By construction, if u; = x;, at least one of P/, Pil has
been crossed, while if u; = z;, at least one of NI, N}
has been crossed. From the discussion above, x; is set
to true in the first case and to false in the second one,
and, hence, the clause is satisfied.

Lemma 1 There exists an s-t path with a cost of at
most 6n(2(m+ 1)+ £) + k if and only if there exists a
truth assignment that satisfies at least (m—k) clauses
of ®.

We can modify our construction by replacing every
heavy segment with a set of distinct parallel single
segments in a way such that every single segment in S
intersecting the original heavy segment now intersects
all the segments in the new set and making sure that
no three segments have a point in common.

Theorem 2 2-CELLS-CONNECTION is NP-hard even
when no three segments intersect at a point.

We can reduce 2-CELLS-CONNECTION to the min-
imum color path problem (MCP): Given a graph G
with colored (or labeled) edges and two of its vertices,
find a path between the vertices that uses the mini-
mum possible number of colors. We color the edges of

the dual graph G of A(S) as follows: two edges of G
get the same color if and only if their corresponding
edges in A(S) lie on the same segment of S. Then,
finding an s-t path of cost k in A(S) amounts to find-
ing a k-color path in G between its two vertices that
correspond to the cells which s, ¢ lie in.

However, MCP is NP-hard [2] and W][1]-hard [5]
(with respect to the number of colors in the path) even
for planar graphs, it has a polynomial-time O(y/n)-
approximation algorithm and is non-approximable
within any polylogarithmic factor [8].

2.1 Tractable cases

Consider the colored dual graph G of A(S) as defined
above. A face of G (except the outer one) corresponds
to a point of intersection of some r > 2 segments and
has r colors and, depending on the type of intersec-
tion, from r to 2r edges. For example, for r = 2 we
can get two multiple edges, a triangle, or a quadrilat-
eral, with two distinct colors.

When any three segments may intersect only at a
common endpoint and no two segments cross, G can
only have multiple edges, bi-chromatic triangles, and
arbitrary large faces where all edges have different col-
ors. In this case, since two segments can intersect only
at one point, each color induces a connected subgraph
of GG, in fact a tree for there can be no monochromatic
cycle in G. Then, 2-CELLS-CONNECTION reduces to
a shortest path problem in an uncolored modification
of GG, where each monochromatic tree is contracted
into a star.

Generalizing this, if we allow k segment crossings,
i.e., bi-chromatic quadrilaterals in G, we can easily
find a minimum-cost s-t path as follows. Let C' C S
be the set of the (at most 2k) segments participating
in these crossings. For every possible subset C’ of
C, first contract every edge of G corresponding to a
segment in C’, and then assign an infinite weight to
every edge corresponding to a segment in C'\ C’. For
a fixed subset, a solution can be found by computing
a shortest path in an uncolored weighted graph.

Theorem 3 2-CELLS-CONNECTION is fixed-
parameter tractable with respect to the number
of segment crossings if any three segments may
intersect only at a common endpoint.

2.2 An application

Let P be a polygon with h holes and S be a set of
n segments lying inside P with their endpoints on its
boundary; see Fig. 4, where, for clarity, the boundary
of P is drawn by a set of simple closed curves. We
consider the restricted 2-CELLS-CONNECTION prob-
lem on P U .S where the s-t path may not cross the
boundary. This version is also NP-hard by a simple
reduction from the general one.
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Figure 4: Some segment clusters in a polygon with
holes and a minimum-cost s-t path.

We partition S into clusters using homotopies as
follows: two segments belong in the same cluster if
and only if there is a continuous transformation from
one to the other, during which the endpoints stay on
the boundary of P; for this, s and ¢ are treated as
special holes. In Fig. 4 for example, the segments
that touch hole o give four clusters. Using simple
topological arguments we prove the following;:

Lemma 4 S can be partitioned into O(h*) clusters
with the property that either all or none of the seg-
ments in a cluster are crossed by a minimum-cost s-t
path.

A minimum-cost s-t path can now be easily found
by testing all possible subsets of clusters.

Theorem 5 The restricted 2-CELLS-CONNECTION
problem in a polygon with holes is fixed-parameter
tractable with respect to the number of holes.

3 Connecting all cells

We prove that ALL-CELLS-CONNECTION is NP-hard
by a reduction from the well-known NP-hard prob-
lem of feedback vertex set (FVS) in planar graphs [6]:
Given a planar graph G, find a minimum-size set of
vertices X such that G — X is acyclic.

First, we subdivide every edge of G obtaining a
planar bipartite graph G’. It is clear that G’ has a
feedback vertex set of size k if and only if G has one.
Next, we use the result by de Fraysseix et al. [4] (see
also Hartman et al. [7]), which states that every planar
bipartite graph is the intersection graph of horizontal
and vertical segments, where no two of them cross.
Let S be the set of segments whose intersection graph
is G’; it can be constructed in polynomial time. Since
G’ has no triangles, no three segments of S intersect at
a point. Finally, observe that all cells in .A(S) become
connected by removing k segments if and only if G’
has a feedback vertex set of size k.
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Theorem 6 ALL-CELLS-CONNECTION in NP-hard
even if no three segments intersect at a point and
there are no segment crossings.

It is also easy to see that a k-size solution to ALL-
CELLS-CONNECTION corresponds to a k-size solution
of FVS in the intersection graph of the input seg-
ments. For general graphs, FVS is fixed-parameter
tractable when parameterized with the size of the so-
lution [3], and has a polynomial-time 2-approximation
algorithm [10].

Corollary 7 ALL-CELLS-CONNECTION is fixed-
parameter tractable with respect to the size of the
solution and has a polynomial-time 2-approximation
algorithm.
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