EuroCG 2011, Morschach, Switzerland, March 28-30, 2011

Convex Treemaps with Bounded Aspect Ratio

Mark de Berg*

Abstract

Treemaps are a popular technique to visualize hier-
archical data. The input is a weighted tree 7 where
the weight of each node is the sum of the weights of
its children. A treemap for 7 is a hierarchical par-
tition of a rectangle into simply connected regions,
usually rectangles. Each region represents a node of
T and the area of each region is proportional to the
weight of the corresponding node. An important qual-
ity criterium for treemaps is the aspect ratio of its re-
gions. Unfortunately, one cannot bound the aspect
ratio if the regions are restricted to be rectangles.
Hence Onak and Sidiropoulos introduced polygonal
partitions, which use convex polygons. We are the
first to obtain convex partitions with optimal aspect
ratio O(depth(7)). We also consider the important
special case that depth(7) = 1, that is, single-level
treemaps. We show how to construct convex single-
level treemaps that use only four simple shapes for
the regions and have aspect ratio at most 34/7.

1 Introduction

Treemaps are a popular technique to visualize hierar-
chical data [10]. The input is a weighted tree 7 where
the weight of each node is the sum of the weights of its
children. A treemap for 7 is a hierarchical partition
of a rectangle into simply connected regions, usually
rectangles. Each region represents a node of 7 and
the area of each region is proportional to the weight of
the corresponding node. To visualize the hierarchical
structure the region associated with a node must con-
tain the regions associated with its children. Shnei-
derman [11] first presented an algorithm for the au-
tomatic creation of rectangular treemaps. Treemaps
are since used to visualize hierarchical data from a
variety of application areas, for example, stock mar-
ket portfolios [7], tennis competitions trees [6], large
photo collections [3], and business data [13].

One of the most important quality criteria for
treemaps is the aspect ratio of its regions [8]. Hence
several approaches [3, 4] try to “squarify” the re-
gions of a rectangular treemap. However, one cannot

*Department of Mathematics and Computer Science, TU
Eindhoven, mdberg@uin.tue.nl and speckman@win.tue.nl. B.
Speckmann was supported by the Netherlands’ Organisation
for Scientific Research (NWO) under project no. 639.022.707.

TMax-Planck-Institut ~ fiir Informatik, Saarbriicken,
vdweele@mpi-inf.mpg.de.

Bettina Speckmann*

Vincent van der Weelet

N |
N
ENANEA
|

Figure 1: Treemaps constructed by our drawing algo-
rithms: single-level convex, hierarchical convex.

bound the aspect ratio if the regions are restricted
to be rectangles. Hence, several types of treemaps
using region shapes other than rectangles have been
proposed. Balzer and Deussen [1, 2] use centroidal
Voronoi tessellations. Their algorithm is iterative and
can give no guarantees on the aspect ratio of the re-
gions produced. Wattenberg [14] developed treemaps
whose regions follow a space filling curve on a grid,
so called Jigsaw maps. Jigsaw maps assume integer
weights, which must add up to a square number. The
regions of the maps are rectilinear, but highly non-
(ortho)convex. However, they do have aspect ratio 4.

Onak and Sidiropoulos [9] introduced polygonal
partitions, which use convex polygons. They proved
an aspect ratio of O((depth(7) - logn)'7) for a tree
T with n leaves. In cooperation with De Berg, this
bound has since been improved to O(depth(7) +
logn) [5]. The latter paper also gives a lower bound
construction of Q(depth(7)).

Results and organization. We are the first to
obtain convex partitions with optimal aspect ratio
O(depth(T)). Our recursive drawing procedure is de-
scribed in Section 2. In Section 3 we also consider
the important special case that depth(7) = 1, that
is, single-level treemaps. We show how to construct
convex single-level treemaps that use only four shapes
and have aspect ratio at most 34/7. Figure 1 shows
two treemaps constructed by our drawing algorithms.
In the treemap on the right the hierarchical structure
is emphasized by line thickness and color: thicker,
darker lines delimit nodes higher in the hierarchy.
Specifically, there are four nodes on the top-level.

Preliminaries. Our input is a rooted tree 7. Follow-
ing [5] we say that T is properly weighted if each node
v of T has a positive weight weight(v) that equals
the sum of the weights of the children of v. We as-

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

71

27th European Workshop on Computational Geometry, 2011

sume that weight(root(7)) = 1. A treemap for T
associates a region R(v) with each node v € T such
that (¢) R(root(7)) is the unit square, (ii) for every
node we have area(R(v)) = weight(v), and (i) for
any node v, the regions associated with the children
of v form a partition of R(r). We denote the set of
children of a node v by children(v).

The aspect ratio of a treemap is the maximum as-
pect ratio of any of its regions. For a single region, we
use the following definition from [5]: the aspect ratio
of a convex region R is diam(R)?/ area(R).

Lemma 1 Suppose all children of node v have weight
at most 2/3 - weight(v). Then we can partition
children(v) into two subsets Sy and Sa, such that
weight(Ss) < weight(S7) < 2/3 - weight(v).

2 Hierarchical treemaps

We describe a recursive algorithm for computing a
polygonal partition (convex treemap) of aspect ratio
O(depth(T)) for a properly weighted tree 7. Our
algorithm has two phases. We first convert T into a
binary tree 7* and then construct a partition for 7*.
This approach is similar to the one taken by De Berg
et al. [5], but we implement both phases differently.

Converting to a binary tree. We recursively convert
T into a binary tree T*, replacing each node with
k > 2 children in 7 by a binary subtree with £ — 1
nodes. During this process we assign a label d(v) to
each node v, corresponding to the depth of v in T.

At every step, we treat a node v with label d(v) and
convert the subtree rooted at v. (Initially v = root(7)
with d(root(7)) = 0.) If v is a leaf there is nothing to
do. If v has two children we recurse on these children
and assign them label d(v) + 1. Otherwise v has k
children, children(v) = {v1,...,v}, for some k > 2.
We then distinguish two cases.

If there is a “heavy” child, say vy, with weight(v1) >
weight()/2, then we turn v into a binary node whose
children are 17 and a new node p1; the children of u
are va, ..., U;. Werecurse on vy and pq, with d(vq) =
d(v) + 1 and d(p1) = d(v). Otherwise all children
have weight less than weight(r)/2, and hence there is
a partition of children(r) into two subsets S; and So
such that weight(S;) < 2/3 - weight(v) for ¢ € {1,2}.
We turn v into a binary node with children p; and
po, with children from S; and Ss, respectively, and
we recurse on g1 and ps with d(uq) = d(p2) = d(v).
Drawing a binary tree. Generalizing ¢-separated
polygons [5], we define a (k, ¢)-polygon to be a convex
polygon P such that

(i) P does not have parallel edges, except possi-
bly two horizontal edges and two vertical edges.
Moreover, each non-axis-parallel edge e makes an
angle of at least ¢ with any other edge and also
with the z-axis and the y-axis.

72

(i) If P has two horizontal edges, then
diam(P)/ height(P) < k.

(iii) If P has two vertical edges, then
diam(P)/ width(P) < k.

It follows from the definition of ¢-separated polygons
that a (k, ¢)-polygon P is a ¢-separated polygon, if it
respects the following:

e if P has two horizontal edges, then height(P) >
width(P);

e if P has two vertical edges, then width(P) >
height(P).

Note that a (k,¢@)-polygon P is ¢-separated if its
bounding box is square.

Lemma 2 Any (k,¢)-polygon has aspect ratio
O(max(k,1/¢)).

Proof. Let P be a (k, ¢)-polygon
with w = width(P) and h =
height(P). Assume that w > h.
Let e; and ey be the horizontal
edges (possibly of length 0), let
x = min(|e1],|ez|), and let X be
a parallellogram of width . We distinguish two cases.

Case 1: = > w/2. P has two horizontal edges, so h >
diam(P)/k. Clearly, the area of P is at least the area
of X which is h > w-diam(P)/(2k). The diameter of
P is at most the diameter of the enclosing rectangle,
hence diam(P) < vw? + h? < wy/2. Combined:

diam(P)? < 2k - diam(P)

asp(P) = area(P) w

< 2V2k = O(k).

Case 2: = < w/2. We obtain polygon P’ from P
by reducing the length of e; and ey with min(z, w —
h). Clearly, area(P’) < area(P). Observe that P’
is a ¢-separated polygon since either it has at most
1 horizontal edge (and w — z > h), or the bounding
box of P’ is square. Therefore, asp(P’) = O(1/¢) [5].
Using diam(P) < v/2w and

diam(P’") >

w—min(z,w —h) Zw—z>w/2,

we calculate

dlam(P)2 2w?
asp(P) = area(P) area()
< WEE s an) = 0(1/0).

O

We construct the partition for 7* in a top-down man-
ner. Each node v in 7™ has an associated region R(v);
initially v = root(7*) and R(v) is the unit square. We
write n(v) for the number of non-axis-parallel edges
in R(v). We maintain the following invariants:

EuroCG 2011, Morschach, Switzerland, March 28-30, 2011

(Inv-1) n(v) < d(v) + 4;
(Inv-2) R(v) is a (k, ¢(v))-separated poly-
gon for k = /17 and ¢(v) = 7 /(2(d(v) +6)).

The invariants are satisfied for v = root(7*). Now
consider a node v that is not root(7*). If v is a
leaf, there is nothing to do. Otherwise, let 11 and vs
be the two children of v. Assume that weight(vy) >
weight(v,). We distinguish two cases.

Case 1: d(v1) = d(v) + 1. Since R(v) uses at most
d(v) + 4 non-axis-parallel edges, there is a line ¢ that
makes an angle of at least 7/(2(d(v) + 6)) with each
of the edges of R(v) and with the z- and the y-axis.
Imagine placing ¢ such that it splits R(v) into two
halves of equal area, and let R’ be the half with the
smallest number of non-axis-parallel edges. Now par-
tition R(v) into subpolygons R(v1) and R(v2) of the
appropriate area with a cut ¢ that is parallel to £ such
that R(v2) C R'. (Thus c lies inside R'.) We claim
that both R(v;) and R(v) satisfy the invariants.

Clearly R(v1) uses at most one edge more than
R(v). Since d(v1) = d(v)+1, this implies that (Inv-1)
is satisfied for R(v1). Now consider the number of
non-axis-parallel edges of R(v2). This is no more
than the number of non-axis-parallel edges of R'. At
most two non-axis-parallel edges are on both sides of
£, hence this number is bounded by

n(ve) < {”(”)JQJ +1< V(V)?%J +1

= {d(;)J +4 <dv)+4<d(va) + 4.
Given the choice of ¢, and because d(v;) > d(v) and
R(v) satisfies (Inv-2), we know that the minimum
angle between any two non-parallel edges of R(v;)
(1 € {1,2}) is at least w/(2(d(v;) + 6)). The following
lemma, that we prove in the full version, suffices to
show that R(v1) and R(v2) satisfy (Inv-2).

Lemma 3 If R(v;) has two horizontal edges, then
diam(R(v;))/ height(R(v;)) < k and if R(v;) has two
vertical edges, then diam(R(v;))/ width(R(v;)) < k,
for i € {1,2}.

Case 2: d(v;) = d(v). By construction of T,
1/3 - weight(v) < weight(v1) < 2/3 - weight(v). We
now partition R(v) into two subpolygons of the ap-
propriate area with an axis-parallel cut orthogonal to
the longest side of the axis-parallel bounding box of
R(v). The possible positions of this cut are limited
by convexity, as specified in the following lemma.

Lemma 4 Let P be a convex polygon with
width(P) > height(P). We can partition P with
a vertical cut into two subpolygons Pi, P, where
area(P)/3 < area(P;) < 2/3 - area(P) (fori € {1,2}),
such that width(P)/4 < width(F;) < 3/4 - width(P).

The number of non-axis-parallel edges of R(v1) and
R(v2) is no more than the number of non-axis-parallel
edges of R(v). Since d(v;) > d(v), this implies R(1)
and R(ve) satisfy (Inv-1). As for (Inv-2), note that
the cut does not introduce any new non-axis-parallel
edges. It is thus met by the following lemma.

Lemma 5 If R(v;) has two horizontal edges (for
i € {1,2}), diam(R(v;))/height(R(r;)) < V1T.
Similarly, if R(v;) has two vertical edges,
diam(R(v;))/ width(R(v;)) < V17.

Lemma 2, together with the fact that max, e d(v) =
depth(7) and Inv-2, implies the result.

Theorem 6 Every properly weighted tree of depth d
can be represented by a polygonal partition (convex
treemap) which has aspect ratio O(d).

3 Single-level treemaps

We now consider the special
case that depth(7) = 1. Our
input is hence a set of posi-
tive weights. We describe a re- Chisel: [\
cursive drawing procedure that Pentagon: D
creates a treemap of aspect ra-

tio at most 34/7 and uses only the four shapes de-
picted on the right. We do not recurse on pentagons,
these are used only for single high weights.

We denote the bounding rectangle of a region R
by p(R). The aspect ratio of a rectangle p is de-
fined as long(p)/short(p), where long(p) is the maxi-
mum of width(p) and height(p) and short(p) is the
minimum. This is equivalent to long(p)?/area(p).
We write short(R) for short(p(R)) and long(R) for
long(p(R)). We frequently use the aspect ratio of the
bounding rectangle of a region and write asp,(R) for
long(R)/short(R). Our drawing procedure keeps the
following invariant:

Rectangle: D

Triangle: B

(Inv) asp,(R) < 4 for all regions R.

We convert 7 into a binary tree 7* as before and
create a drawing for 7* in a top-down manner. Each
node v has again an associated region R(v); initially
v = root(7T*) and R(v) is the unit square. If v is a
leaf, we are done. Otherwise, let v1 and v, be the
children of v and let 1; be the heavier child. We
distinguish three cases according to the shape of R(v).

Case 1: Rectangle. If weight(v;) and weight(rz) are
roughly equal, weight(v)/(asp,(R(v)) - weight (1)) <
4, we cut R(v) through its longer side into two rect-
angles and have short(R(v))?/area(R(v2)) < 4 and
hence asp,(R(v;)) < 4. Otherwise we draw R(v2) as
a equilateral right-angled triangle in a corner of R(v).
Since we use only equilateral right-angled triangles the

73

27th European Workshop on Computational Geometry, 2011

bounding rectangle of any triangle is a square. Fur-
thermore, since p(R(v1)) equals p(R(v) we also have
asp,(R(r1)) < 4.

Case 2: Triangle. We cut a triangle into a chisel
and a triangle. The bounding rectangle of the chisel
has aspect ratio at most 4 if its width is at least 1/4
times the width of the triangle. This is the case if
weight (v)/weight(v) > 7/16. Since vy is the heavier
child, this always holds.

Case 3: Chisel. Cutting the longer

side of a chisel, by an orthogonal cut, ti
. P

yields two regions base and tip. Cut-

ting the shorter side of a chisel, by a lower

parallel cut, yields regions higher and higher

lower. We first give two lemmas for

analyzing the two types of cuts. For brevity, we write

rel(v;) = weight(v;) /weight(v), i € {1, 2}.

base: :

Lemma 7 For an orthogonal cut, the regions meet
the invariant if short(R(v))?/ area(base) < 4.

Lemma 8 For a parallel cut, with higher = R(v1),
we have asp,(lower) < asp,(higher) iff rel(v1) <
asp,(R(v))/(2 - asp,(R(v)) — 1).

We distinguish three cases.

Case 1: 1y is a leaf. We let R(v1) be the
base and R(v;) be the tip of an orthogonal cut.
Since rel(v;) > 1/2, we can easily show that
short(R(v))?/ area(base) < 4. By Lemma 7, the sub-
regions meet the invariant.

Case 2: v is not a leaf and asp,(R(v)) > 3/2.
We let R(v1) be the tip and R(v2) be the base of
an orthogonal cut. The base is certainly a rectan-
gle, since the rectangular part of the chisel is at least
half of its total area and v is the lighter child. Us-
ing rel(r2) > 1/3 (Lemma 1), we can show that
short(R(v))?/ area(base) < 4. Then, the subregions
meet the invariant by Lemma 7.

Case 3: v, is not a leaf and asp,(R(v)) < 3/2. We let
R(v1) be the higher and R(v2) be the lower of a par-
allel cut. It is not hard to see that asp,(higher) meets
the invariant if short(higher) > 3/8 - short(R(v)),
which follows from 14 being the heavier child. More-
over, since rel(v1) < 2/3 by Lemma 1, it follows from
Lemma 8 that lower meets the invariant as well.

The aspect ratio of a region R, compared to asp,(R),
is maximal if R is a chisel. Together with the invari-
ant, this implies the following result.

Theorem 9 Every properly weighted single-level
tree can be represented by a convex treemap which
uses only four simple shapes and has aspect ratio at
most 34/7.

74

References

[1] M. Balzer and O. Deussen. Voronoi treemaps. In
Proc. IEEE Symposium on Information Visualiza-
tion, pages 7-14, 2005.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi
treemaps for the visualization of software metrics.
In Proc. ACM Symposium on Software Visualization,
pages 165—-172, 2005.

[3] B. B. Bederson, B. Shneiderman, and M. Watten-
berg. Ordered and quantum treemaps: Making ef-
fective use of 2d space to display hierarchies. ACM
Transactions on Graphics, 21(4):833-854, 2002.

[4] M. Bruls, K. Huizing, and J. van Wijk. Squarified
treemaps. In Proc. Joint FEurographics and IEEE
TCVG Symposium on Visualization, pages 33—42.
Springer, 2000.

[5] M. de Berg, K. Onak, and A. Sidiropoulos. Fat
polygonal partitions with applications to visualiza-
tion and embeddings. In preparation. http://arxiv.
org/abs/1009.1866v1, 2010.

[6] L. Jin and D. C. Banks. Tennisviewer: A browser
for competition trees. IEEE Computer Graphics and
Applications, 17(4):63-65, 1997.

[7] W. Jungmeister and D. Turo. Adapting treemaps
to stock portfolio visualization. Technical report
UMCP-CSD CS-TR-2996, University of Maryland,
1992.

[8] N. Kong, J. Heer, and M. Agrawala. Perceptual
guidelines for creating rectangular treemaps. IEEE
Transactions on Visualization and Computer Graph-
ics, 16(6):990-998, 2010.

[9] K. Onak and A. Sidiropoulos. Circular partitions
with applications to visualization and embeddings. In
Proc. 24th Symposium on Computational Geometry,
pages 28-37, 2008.

[10] B. Shneiderman. Treemaps for space-constrained vi-
sualization of hierarchies. http://www.cs.umd.edu
/hcil/treemap-history/index.shtml.

[11] B. Shneiderman. Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on
Graphics, 11(1):92-99, 1992.

[12] E. Tufte. The Visual Display of Quantitative Infor-
mation. Graphics Press, 2001.

[13] R. Vliegen, J. J. van Wijk, and E.-J. van der Linden.
Visualizing business data with generalized treemaps.
IEEE Transactions on Visualization and Computer
Graphics, 12(5):789-796, 2006.

[14] M. Wattenberg. A note on space-filling visualizations
and space-filling curves. In Proc. IEEE Symposium
on Information Visualization, pages 181-185, 2005.

