
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Implicit Flow Routing on Triangulated Terrains

Mark de Berg Herman Haverkort Constantinos P. Tsirogiannis∗

Abstract

Flow-related structures on terrains are defined in
terms of paths of steepest descent (or ascent). A
steepest descent path on a polyhedral terrain T with
n vertices can have Θ(n2) complexity, since at worst
case the path can cross Θ(n) triangles for Θ(n) times
each. We present a technique for tracing a path of
steepest descent on T in O(n log n) time implicitly,
without computing all the intersection points of the
path with the terrain triangles.

1 Introduction

Background and motivation. In many applications
it is necessary to visualize, compute, or analyze flows
on a height function defined over some 2- or higher-
dimensional domain. Often the direction of flow is
given by the gradient and the domain is a region in
R

2. The flow of water in mountainous regions is a
typical example of this. Modeling and analyzing wa-
ter flow is important for predicting floods, planning
dams, and other water-management issues. Hence,
flow modeling and analysis has received ample atten-
tion in the gis community [6, 7, 8, 9].

In gis, mountainous regions are usually modeled as
a dem or as a tin. A dem (digital elevation model)
is a uniform grid, where each grid cell is assigned an
elevation. Because of the discrete nature of dems, it is
hard to model flow in a natural and accurate way. A
tin (triangulated irregular network) is obtained by as-
signing elevations to the vertices of a two-dimensional
triangulation; it is the model we adopt in this paper.
In computational geometry, a tin is usually referred
to as a (polyhedral) terrain. One advantage of poly-
hedral terrains over dems is that one can use a non-
uniform resolution, using small triangles in rugged ar-
eas and larger triangles in flat areas. Another advan-
tage is that the surface defined by a polyhedral ter-
rain is continuous, which makes flow modeling more
natural. Indeed, the standard flow model on polyhe-
dral terrains is simply that water follows the direction
of steepest descent. To make the flow direction well
defined, it is then often assumed—and we will also
make this assumption—that the direction of steepest
descent is unique for every point on the terrain. For

∗Dept. of Mathematics and Computer Science, Eind-
hoven University of Technology, mdberg@win.tue.nl,

cs.herman@haverkort.net, ctsirogi@win.tue.nl

instance, the terrain should not contain horizontal tri-
angles.1

There are several important structures related to
the flow of water on a polyhedral terrain T . The
simplest structure is the path that water would fol-
low from a given point p on the terrain. This path is
called the trickle path and, as already mentioned, in
our model it is simply the path of steepest descent.
Another important structure is the watershed of a
point p on T , which is the set of all points on T from
which water flows to p. In other words, it is the set
of points whose trickle path contains p.

Unfortunately, the combinatorial complexity of
these structures can be quite high. For instance,
De Berg et al. [3] showed that there are terrains
of n triangles on which certain trickle paths cross
Θ(n) triangles each Θ(n) times, resulting in a path
of complexity Θ(n2). McAllister [1] and McAllister
and Snoeyink [2] showed that the total complexity of
the watershed boundaries of all local minima can be
Θ(n3). This is due to the fact that at worst case the
boundary of a watershed can consist of Θ(n) paths of
steepest gradient, each of Θ(n2) complexity.

For fat terrains, where the angles of the terrain tri-
angles are lower-bounded by a constant, the situation
is somewhat better: here the worst-case complexity
of a single path of steepest ascent/descent is Θ(n) [4].
The complexity of a watershed, however, can still be
Θ(n2).

It is not always necessary, however, to explicitly
compute the structure of interest. For example, it
may be sufficient to compute only the point where
a path of steepest descent ends, rather than all the
intersections points of the path with the terrain tri-
angles. Is it possible thus to compute for a point p
on T the point where the trickle path from p ends
without explicitly computing the path itself, thereby
avoiding a worst-case running time of Θ(n2)?

Our results. Inspired by the above, we study the
problem of implicitly tracing paths of steepest descent
or ascent on a polyhedral terrain T with n vertices.
we give an O(n log n) algorithm that finds out where
the trickle path of a given point p ends, without con-

1This can of course be ensured by a small perturbation of
the elevations of the terrain vertices, but even small perturba-
tions may have undesirable effects on the water flow. How to
deal with horizontal triangles is therefore an important research
topic in itself.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

151

27th European Workshop on Computational Geometry, 2011

structing the actual path (which would take Θ(n2)
time in the worst case). Our algorithm can also re-
port all the triangles crossed by the path in the same
amount of time.

Terminology and notation. For a terrain T we de-
note the set of its edges by E, and the set of its ver-
tices by V . Edges in E are defined to be open, that
is, they do not include their endpoints. For any point
p we denote its z-coordinate by z(p). For an edge
e ∈ E incident to a triangle t we call e an out-edge
of t if e receives water from the interior of t through
the direction of steepest descent. Otherwise we call
e an in-edge of t. We call e a valley edge if e is an
out-edge for both of its incident triangles, we call e
a transfluent edge if e is an out-edge for only one in-
cident triangle, and we call e a ridge edge if it is an
in-edge for both of its incident triangles.

2 Computing the triangles crossed by a trickle
path

Let T be a terrain with n triangles, and let p be
the point for which we want to compute the point
where trickle(p) ends. As we only want to find where
trickle(p) ends, we do not want to explicitly compute
all intersection points between trickle(p) and the ter-
rain edges. To avoid this, each time we encounter a
sequence of edges that we crossed before, we jump to
the first edge that we have not encountered so far. We
can detect features that we already crossed, because
we mark them the first time we hit them. Next we
show how to do the above.

Define an EV -sequence to be the (ordered) se-
quence of terrain edges and vertices crossed by some
path on T . For a point q ∈ trickle(p), let S(q) de-
note the EV-sequence crossed by the part of trickle(p)
from p to q. Consider a point q ∈ trickle(p) and let
S(q) = f1f2 · · · fk. Let j be the largest index such
that the feature fj occurs at least twice in S(q), and
let i be the largest index with i < j such that fi = fj .
We call fifi+1 · · · fj the last cycle of S(q), and we call
fj+1 · · · fk the last chain of S(q); see Fig. 1(i). We
need the following lemma.

Lemma 1 Let f be a feature in S(q) that only occurs
before the last cycle of S(q). Then trickle(q) cannot
cross f .

Proof. Let S(q) = f1, . . . , fk and let fi, . . . , fj be
the last cycle of S(q). Let e = fi = fj and let ri and
rj be the intersection points of trickle(p) with e that
correspond to fi and fj , respectively. Let π(p, ri) be
the part of trickle(p) from p to ri and let π(ri, rj) be
the part of trickle(p) between ri and rj . Note that
trickle(q) ⊂ trickle(rj). Define P := π(ri, rj) ∪ rirj .
Then P is the boundary of a simple polygon—see

Fig.1(i), where this polygon is depicted grey. Since
trickle-paths cannot self-intersect and e can be crossed
in only one direction by a trickle path, one of the
paths π(p, ri) and trickle(rj) lies completely inside P
while the other lies completely outside P . This im-
plies that a feature intersecting π(p, ri) can only inter-
sect trickle(q) if that feature intersects π(ri, rj) and,
hence, occurs in the last cycle.

�
Now imagine tracing trickle(p) and suppose we

reach an edge e that we already crossed before. Let
q be the point on which trickle(p) crosses e this time.
After crossing e again, we may cross many more edges
that we already encountered. Our goal is to skip these
edges and immediately jump to the next new edge on
the trickle path. By Lemma 1, the already crossed
edges are either in the last cycle or in the last chain
of S(q). In fact, since q lies on an already crossed edge,
the last chain is empty and so the edges we need to
skip are all in the last cycle. Thus we store the last
cycle in a data structure Tcycle—we call this structure
the cycle tree—that allows us to jump to the next new
edge by performing a query FindExit(Tcycle, q). More
precisely, if C = fi, . . . , fk denotes the cycle stored in
Tcycle and q is a point on fi, then FindExit(Tcycle, q)
reports a pair (fexit, qexit) such that fexit is the first
feature crossed by trickle(q) that is not one of the
features in C and qexit is the point where trickle(q)
hits fexit. The cycle tree stores the last cycle encoun-
tered so far in the trickle path, thus we have to update
this tree according to the changes in the last cycle.

Besides the cycle tree we also maintain a list L
which stores the last chain of S(q); these edges may
have to be inserted into Tcycle later on. This leads to
the following algorithm.
Algorithm ExpandTricklePath(T , p)
Input: A triangulated terrain T and a point p on the

surface of T .
Output: The point where trickle(p) ends and the edges

crossed by this path.
1. Initialize an empty cycle tree Tcycle and an empty list

L, and set q := p. If q lies on a feature f , then insert
f into L.

2. while q is not a local minimum and flow from q does
not exit the terrain

3. do � Invariant: Tcycle stores the last cycle of S(q),
� and L stores its last chain.

4. Let f be the first feature that trickle(q) crosses
after leaving from q, and let q′ be the point
where trickle(q) hits f .

5. q := q′

6. if f is not marked
7. then Mark f and append f to L.
8. else Update Tcycle and empty L.
9. Set (fexit, qexit) := FindExit(Tcycle, q),

mark fexit, and set q := qexit.
10. Append fexit to L (which is currently

empty) and update Tcycle.
11. return q.

152

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Dom(FS)

Im(FS)

q

FS(q)

(ii)(i)

f1

fi = fj

fj+1 fk

ri

rj q

p

Figure 1: (i) The last cycle of the EV-sequence S(q) is fi, . . . , fj , and the last chain is fj+1, . . . , fk.
(ii) The trickle function.

It is easy to see that the invariant holds after step 1
and that it is maintained correctly, assuming Tcycle is
updated correctly in steps 8 and 10. This implies the
correctness of the algorithm. Next we describe how
to implement the cycle tree.

Consider an EV-sequence S without cycles and as-
sume that there is some trickle path that crosses the
features in S in the given order. Let first(S) denote
the first feature of S and let last(S) denote its last fea-
ture. We define the trickle function FS : first(S) →
last(S) of the sequence S as follows. If the trickle path
of a point q ∈ first(S) follows the sequence S all the
way up to last(S), then FS(q) is the point on last(S)
where trickle(q) hits last(S). If, on the other hand,
trickle(q) exits S before reaching last(S), then FS(q)
is undefined. We denote the domain of FS (the part
of first(S) where FS is defined) by Dom(FS), and we
denote the image of FS by Im(FS). Since we assumed
there is a trickle path crossing S, both Dom(FS) and
Im(FS) are non-empty. Fig. 1(ii) illustrates these def-
initions. Note that Im(FS) is a single point when one
of the features in S is a vertex. The following lemma
follows from elementary geometry.

Lemma 2 (i) The function FS(q) is a linear function,
and Dom(FS) and Im(FS) are intervals of first(S) and
last(S), respectively. (ii) Suppose an EV-sequence S
is the concatenation of EV-sequences S1 and S2. Then
FS can be computed from FS1 and FS2 in O(1) time.

Now consider an EV-sequence S(q) = f1 · · · fk and
let C = fi, . . . , fj be the last cycle of S(q). The cycle
tree Tcycle for C is a balanced binary tree, defined as
follows.

• The leaves of Tcycle store the features fi, . . . , fj−1

in order.

• For an internal node ν, let lc[ν] and rc[ν] de-
note its left and right child, respectively. Let
S[ν] denote the subsequence of C consisting of
the features stored in the leaves below ν. Further-
more, let first[ν] and last[ν] denote the features

stored in the leftmost and rightmost leaf below
ν, respectively. Then ν stores the trickle func-
tion FS[ν], and the trickle function FS′[ν], where
S ′[ν] is the sequence fνf ′

ν with fν = last[lc[ν]]
and f ′

ν = first[rc[ν]].

Lemma 3 The function FindExit(Tcycle, q) can be
implemented to run in O(log |C|) time, where |C| is
the length of the cycle stored in Tcycle.

Proof. Imagine following trickle(q), starting at fi,
the first feature in C. We will cross a number of fea-
tures of C, until we exit the cycle. (We must exit the
cycle before returning to fi again, because a trickle
path cannot cross the same sequence twice without
encountering another feature in between [3].) Let f∗

be the feature of C that we cross just before exiting.
We can find f∗ in O(log |C|) time by descending down
Tcycle as follows.

Suppose we arrive at a node ν; initially ν is the
root of Tcycle. We will maintain the invariant that f∗

is stored in a leaf below ν. We will make sure that
we have the point qν where trickle(q) crosses first[ν]
available; initially qν = q. When ν is a leaf we have
found f∗, otherwise we have to decide in which sub-
tree to recurse. The feature f∗ is stored in the right
subtree of an internal node ν if and only if

(i) qν ∈ Dom(FS[lc[ν]]), which means trickle(qν) com-
pletely crosses S[lc[ν]], and
(ii) FS[lc[ν]](qν) ∈ Dom(FS′[ν]), meaning trickle(qν)
reaches first[rc[ν]] after crossing S[lc[ν]].

If these two conditions are met, we set ν := rc[ν] and
qν := FS′[ν] ◦ FS[ν](qν), otherwise we set ν := lc[ν].

Once we have found f∗ and the point q∗ where
trickle(q) crosses f∗, we can compute the exit edge
eexit and point qexit by inspecting the relevant trian-
gle t incident to f∗: we just have to compute where
the path of steepest descent from q∗ exits t. �

It remains to explain how to update Tcycle. First
consider step 8 of ExpandTricklePath. Suppose that,

153

27th European Workshop on Computational Geometry, 2011

just before q reaches f , we have S(q) = f1 · · · fk. Let
fi · · · fj be the last cycle of S(q) (which is stored in
Tcycle) and fj+1 · · · fk its last chain (which is stored
in L). We know that f has been crossed before. By
Lemma 1 this implies f = fm for some m � i. We
distinguish two cases.

• If m > j, then f occurs in the last chain and,
hence, in L. Now after crossing f the last cycle
becomes fm · · · fkf . So updating Tcycle amounts
to first emptying Tcycle, and then constructing a
new cycle tree on fm · · · fkf , which can be done
by a bottom-up procedure in O(|L|) time.

• If i � m � j then f occurs in the last cy-
cle. Then after crossing f the last cycle becomes
fm · · · fjfj+1 · · · fkf . (In the special case that
m = j, we in fact have fi = fj = f and the last
cycle becomes fjfj+1 · · · fkf .) We can now up-
date Tcycle by deleting the features f1 · · · fm−1,
and inserting the features fj+1 · · · fk. (Recall
that the last feature of a cycle is not stored in
the cycle tree.) Inserting and deleting elements
from an augmented balanced binary tree Tcycle

can be done in logarithmic time in a standard
manner.

Next consider the updating of Tcycle in step 10.
Let fi · · · fj be the last cycle before step 9, where we
jump to the first new feature crossed by the trickle
path. Let fm be the last feature we cross before we
exit the cycle, that is, the feature f∗ in the proof of
Lemma 3. Then after the jump, the last cycle becomes
fm · · · fj−1fi · · · fm. (Essentially, the cycle does not
change, but its starting feature changes.) Thus, to
update Tcycle we have to split Tcycle between fm−1

and fm into two cycle trees T 1
cycle and T 2

cycle, then
merge these cycles trees again but this time in the
opposite order (that is, putting T 1

cycle to the right of
T 2

cycle instead of to its left). Splitting and merging
can be done in logarithmic time, if we use a suitable
underlying tree such as a red-black tree. We obtain
the following theorem.

Theorem 4 Let T be a terrain with n triangles and
let p a point on the surface of T . Algorithm Ex-
pandTricklePath(T , p) traces the trickle path of p in
time O(n log Cmax), where Cmax is the length of the
longest cycle in the EV-sequence of trickle(p).

3 Applications to Other Drainage Structures

In the full version of this paper we show how we can
use the presented method so as to derive an efficient
mechanism that expands a collection of Θ(n) paths
simultaneously. This mechanism combines the data
structures that we describe above with a space-sweep
algorithm. Based on this we derive O(n log n) time
algorithms for:

◦ computing for each local minimum p of T the
triangles contained in the watershed of p

◦ computing the surface network graph [5] of T .

We have also designed an O(n2) time algorithm
that computes the watershed area for each local min-
imum of T .

References

[1] M. McAllister. A Watershed Algorithm for Triangu-
lated Terrains. In Proc. 11th Canadian Conference
on Computational Geometry, pages 103–106, 1999.

[2] M. McAllister and J. Snoeyink. Extracting Consis-
tent Watersheds From Digital River And Elevation
Data. Annual Conference of the American Society
for Photogrammetry and Remote Sensing, 1999.

[3] M. de Berg, P. Bose, K. Dobrint, M. van Kreveld,
M. Overmars, M. de Groot, T. Roos, J. Snoeyink
and S. Yu. The Complexity of Rivers in Triangu-
lated Terrains. In Proc. 8th Canadian Conference
on Computational Geometry, pages 325–330, 1996.

[4] M. de Berg, O. Cheong, H. Haverkort, J. Lim and
L. Toma. I/O-Efficient Flow Modeling on Fat Ter-
rains. In Proc. 10th Workshop on Algorithms and
Data Structures, pages 239–250, 2007.

[5] L. Čomić, L. De Floriani and L. Papaleo. Morse-
Smale Decompositions for Modeling Terrain Knowl-
edge. In Proc. 7th International Conference on Spa-
tial Information Theory, pages 426–444, 2005.

[6] A. Frank, B. Palmer and V. Robinson. Formal Meth-
ods for the Accurate Definition of Some Fundamental
Terms in Physical Geography. In Proc. 2nd Interna-
tional Symposium Spatial Data Handling, pages 585–
599, 1986.

[7] S. Mackay and L. Band. Extraction and Representa-
tion of Nested Catchment Areas from Digital Eleva-
tion Models in Lake-Dominated Topography. Water
Resources Research Journal, 34(4):897–901, 1998.

[8] O. Palacios-Velez and B. Cuevas-Renaud. Automated
River-Course, Ridge and Basin Delineation from Dig-
ital Elevation Data. Journal of Hydrology, 86:299–
314, 1986.

[9] D. Theobald and M. Goodchild. Artifacts of
TIN-Based Surface Flow Modeling. In Proc. of
GIS/LIS’90, pages 955–964, 1990.

[10] S. Yu, M. van Kreveld and J. Snoeyink. Drainage
Queries in TINs: From local to global and back again.
In Proc. 7th International Symposium on Spatial
Data Handling, pages 13–1, 1996.

154

