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Abstract

We present a new approach for solving polynomial
systems of two bivariate polynomials with rational
coe�cients. We �rst use González-Vega and Necula
approach [3] based on sub-resultant sequences for de-
composing a system into subsystems according to the
number of roots (counted with multiplicities) in ver-
tical lines. We then show how the resulting triangu-
lar subsystems can be e�ciently solved by computing
lexicographic Gröbner basis and Rational Univariate
Representations (RURs) of these systems. We also
show how this approach can be performed using mod-
ular arithmetic, while remaining deterministic.

Finally we apply our solver to the problem of com-
puting the topology of algebraic curves using the algo-
rithm Isotop [2]. We show that our approach yields a
substantial gain of a factor between 1 to 10 on curves
of degree up to 28 compared to directly computing a
Gröbner basis and RUR of the input system, and how
it leads to a very competitive algorithm compared to
the other state-of-the-art implementations.

1 Bivariate system solving algorithm

We present in this section our new bivariate solver and
discuss in Section 2 its application to the computation
of the topology of plane algebraic curves.

The input is a system S = {P,Q} where P and Q
are two bivariate polynomials in Q[x, y]. We solve the
system, that is the output is a set of boxes isolating
the solutions of S, i.e., pairwise-disjoint axis-parallel
boxes in the xy-plane, each containing exactly one
root.

Our algorithm proceeds in two steps. First we de-
compose the system S into a set of triangular sys-
tems according to the sub-resultant sequence of P
and Q (Section 1.1). This decomposition is essentially
identical to that of González-Vega and Necula [3]; for
completeness, we describe this decomposition in Sec-
tion 1.2 together with our extension for the treatment
of solutions for which the leading coe�cient of P or
Q (seen as a polynomial in y) vanishes. In the sec-
ond step, we compute a Gröbner basis and a Rational
Univariate Representation (RUR) [4] of every system
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of the decomposition (Sections 1.3). We show how
the speci�c form of the input triangular systems per-
mits to trivially compute a Gröbner basis, and yields
improvements to the algorithm of [4] for computing
a RUR. The RUR is then used in a standard way to
solve these systems.
We show in Section 1.4 how these two steps can be

performed with modular arithmetic in a deterministic
way, yielding a very e�cient algorithm.
It should be stressed that we do not compute the

multiplicity of the roots in the input system. However,
for every root (α, β) of a system {F, ∂F∂y }, we obtain

the multiplicity of β as a root of F (α, y) (Section 2).
These multiplicities are needed in our algorithm for
computing the topology of plane curves, and this is a
key feature of our solving algorithm.

1.1 Preliminaries : sub-resultant sequences

Recall that P and Q are two polynomials in Q[x, y].
Considering P and Q as polynomials in y, let P =∑p
i=0 aiy

i, and Q =
∑q
i=0 biy

i with ai, bi in Q[x].
Assume without loss of generality that p 6 q.
The Sylvester matrix of P and Q is the (p + q) ×

(p + q) matrix where the k-th row consists, for 1 6
k 6 q, of k − 1 zeros, followed by the coe�cients
of P , ap, . . . , a0, and completed by q − k zeros, and,
for q + 1 6 k 6 p + q, of k − q − 1 zeros, followed
by the coe�cients of Q, bq, . . . , b0, and completed by
p + q − k zeros. One denotes by Sylvi, i 6 q, the
(p + q − 2i) × (p + q − i) matrix obtained from the
Sylvester matrix of P and Q by deleting the i last
rows of the coe�cients of P , the i last rows of the
coe�cients of Q, and the i last columns.

De�nition 1 ([1]) The i-th polynomial sub-
resultant of P and Q, denoted by Sresi(P,Q), is the
polynomial

det(Mp+q−2i)y
i+det(Mp+q−2i+1)y

i−1+· · ·+det(Mp+q−i)

where Mj is the square sub-matrix of Sylvi of size
p + q − 2i and consisting of the p + q − 2i − 1 �rst
columns and the j-th column of Sylvi, j ∈ {p + q −
2i, . . . , p+q−i}. The sub-resultant sequence of P and
Q is the sequence Sresi(P,Q) for i from 0 to q.

Sresi(P,Q) is a polynomial of degree at most i in
y, and the coe�cient of the monomial of degree i,
denoted by sresi(P,Q), is called the i-th principal

sub-resultant coe�cient. Note that Sres0(P,Q) =
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sres0(P,Q) is the resultant of P and Q. We thus
have

Sresi(P,Q) = sresi(P,Q)yi +Ri(x, y) (1)

where the degree in y of Ri is at most i − 1, and its
degree in x is at most the product of the total degrees
of P and Q (the degree in x is generically maximal
for i = 0 which is that of the resultant).
The polynomial sub-resultants of P and Q are equal

to either 0 or to (up to a constant) polynomials in the
remainder sequence of P and Q [1, p.308]. For e�-
ciency, the computations of sub-resultant sequences
are usually performed by computing polynomial re-
mainder sequences using some variants of Euclid al-
gorithm.

1.2 Triangular decomposition

First, we project the solutions of S on the x-axis; al-
gebraically, this amounts to computing the resultant
of P and Q with respect to the variable y. The roots
of that resultant, denoted Resy(P,Q) ∈ Q[x], are the
x-coordinates of the solutions of S, and the common
roots of their leading coe�cients ap and bq ∈ Q[x].
Hence, the resultant of P and Q provides the x-
coordinates of the points where the corresponding
curves intersect or have a common vertical asymptote.
For each such x-coordinate, the di�culty is to com-
pute the y-coordinates of the corresponding intersec-
tion points. This can be done with the sub-resultant
sequence based on the following fundamental propo-
sition.

Proposition 1 ([3]) Let P,Q ∈ Q[x, y] be two
square-free polynomials and consider their sub-
resultant sequence with respect to the variable y. Let
α ∈ R be a root of Resy(P,Q) such that ap(α) 6= 0
and bq(α) 6= 0. Then{

sres0(α) = 0, · · · , sresk−1(α) = 0
sresk(α) 6= 0

⇔ Gcd(P (α, y), Q(α, y)) = Sresk(α, y).

We decompose the input system S into a set of
triangular systems with respect to the degree of
Gcd(P (α, y), Q(α, y)) according to Prop. 1. Through-
out the decomposition we consider the square-free
part of the resultant of P and Q, Resy(P,Q) =
Sres0(P,Q), and we denote it by sqrfree(Sres0(x)).
Taking the square-free part simpli�es the computa-
tion but it does not preserve the multiplicities of the
roots. However, this is actually critical in our algo-
rithm for computing the multiplicities in the �bers
needed for the topology computation, as mentioned
earlier (Section 2).
According to Prop. 1, we �rst consider only x-

coordinates on which ap and bq do not vanish. Ge-
ometrically, the roots of ap correspond to vertical

asymptotes of the curve CP de�ned by P = 0;
similarly for bq and the curve CQ. We denote by
Fres(x) the polynomial sqrfree(Sres0(x)) �without
these roots�:

Fres(x) =
sqrfree(Sres0(x))

Gcd(sqrfree(Sres0(x)), ap(x)bq(x))
. (2)

Solutions outside the vertical asymptotes. The
solutions of S that do not lie on a vertical asymp-
tote of CP or CQ have their x-coordinates solutions of
Fres(x). The idea is to factorize Fres(x) with re-
spect to the degree of the Gcd(P (α, y), Q(α, y)) for α
root of Fres(x).
Let G1(x) = Gcd(Fres(x), sres1(x)). We

split Fres(x) in two factors G1 and F1(x) =
Fres(x)
G1(x)

, and we consider the system S1 ={
F1(x)
Sres1(x, y) = sres1(x)y +R(x)

. The roots of S1

are exactly the roots (α, β) of S such that the degree
of the Gcd(P (α, y), Q(α, y)) is 1. In other words, α is
a root of Fres(x) such that S admits a unique root
(α, y) counted with multiplicity.
According to Prop. 1, we split again G1 with re-

spect, this time, to the polynomial sres2(x). Let
G2 = Gcd(G1, sres2), F2 = G1/G2, the system
S2 = {F2(x), Sres2(x, y)} encodes the solutions (α, β)
of S such that the degree of the Gcd(P (α, y), Q(α, y))
is 2. In other words, α is a root of Fres(x) such that
S admits two roots (α, y) counted with multiplicity.
We go ahead recursively until we decompose com-

pletely Fres(x) with respect to the polynomials
sres1(x), . . . , sresq(x). At the k-th step the roots
of Fk(x) are exactly the roots of Fres(x) verifying
sres1(x) = 0, . . . , sresk−1(x) = 0, and sresk(x) 6= 0.
The result is a set of triangular sys-

tems Sk = {Fk(x), Sresk(x, y)} such that
Gcd(Fk(x), sresk(x)) = 1.

Solutions on vertical asymptotes. We now con-
sider the solutions of S on an asymptote x = α, with
α a root of ap or bq. Our algorithm di�ers here from
that of [3] in which they detect when such a situation
occurs and shear the coordinate system. For sake of
brevity, we only detail the case of solutions on a com-
mon asymptote, that is x = α with α a root of D(x)
the square-free part of Gcd(ap, bq). Let P1 , Q1 be
de�ned as follows:

P1 =
∑p

i=1(aimodD(x))yi , Q1 =
∑q

i=1(bimodD(x))yi,

where U(x) mod D(x) is the remainder of the Eu-
clidean division of U(x) by D(x) in Q[x]. It is clear
that P1, Q1 coincide with P and Q above the roots
of D(x), i.e., ∀α ∈ R : D(α) = 0 =⇒ P1(α, y) =
P (α, y) and Q1(α, y) = Q(α, y). We decompose the
system {P1, Q1} as described above but keeping in
the resultant only the roots of D(x): Fres(x) =
sqrfree(Gcd(Sres0(P1, Q1), D(x))). We thus recover
in the resulting systems, solutions located on the com-
mon asymptotes.
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Output. The output is a set of triangu-

lar systems Sk =

{
Fk(x) = 0
Sresk(x, y) = 0

such that

Gcd(Fk(x), sresk(x)) = 1 and all Fk are square-free.
For every k there might be several systems Sk: de-
pending on whether the solution of Sk lies on a ver-
tical asymptote or not, Sresk denotes the k-th sub-
resultant of P and Q, or of some reductions of P and
Q modulo some factors of their leading coe�cients ap
and bq in Q[x].

1.3 Groebner basis and RUR computation

A speci�c property of the decomposition obtained
above is that Gcd(Fk(x), sresk(x)) = 1. By Bé-
zout identity, there exists U, V ∈ Q[x] such that
UFk + V sresk = 1. Thus, since Sresk(x, y) =
sresk(P,Q)yk + Rk(x, y) (Eq. (1)), the system Sk is

equivalent to S̃k :

{
Fk(x) = 0

yk + R̃k(x, y) = 0
where R̃k is

the reduction of V Rk modulo Fk (that is each coe�-
cient is reduced modulo Fk(x)); hence R̃k has degree
in y strictly less than k and strictly less than that
of Fk in x. The resulting system thus is a (reduced)
lexicographic Gröbner basis [1].
At this stage, we can use a standard RUR algo-

rithm for solving each of these systems [4]. Recall
that given a bivariate system, a RUR de�nes a pa-
rameterization of its solutions with four polynomials
f, gx, gy, g ∈ Q[t] such that the solutions of the system

are ( gx(ti)g(ti)
,
gy(ti)
g(ti)

) for the roots ti of f . It should be

stressed that a RUR preserves the multiplicity of the
roots of the system, that is, the multiplicity of a root

ti of f is the multiplicity of the root ( gx(ti)g(ti)
,
gy(ti)
g(ti)

) in

S̃k, and thus in Sk. The fact that Fk is square-free
yields a geometric interpretation of the multiplicities
is the system Sk that will be exploited in our appli-
cation on the topology of curves.
The particular structure of the systems we obtain

yields improvements to the algorithm of Rouillier [4]
for computing a RUR. The critical properties of our
input systems Sk is that (i) they are Gröbner basis
for the lexicographic order, which implies that one of
the polynomials is univariate, and (ii) there are only
two polynomials in the basis. Most of the RUR com-
putations are performed using linear algebra in the
quotient algebra Q[x, y]/Sk (where Sk denote here
the ideal associated to the system). Property (ii) im-
plies that a basis of this algebra is simply {xiyj}, for
0 6 i < degree(Fk) and 0 6 j < k. One important
step of the algorithm is to compute the product of
all pairs of elements of that basis, reduced modulo
the system Sk; this step is substantially simpli�ed by
the structure of the basis and by using Property (i).
The complexity of this step, and actually of the whole
RUR computation, is this way reduced from O(D3) to
O(D2) where D is the size of the algebra basis.

1.4 Deterministic modular method

The bitsize of the coe�cients in the RUR is reasonable
in the sense that these coe�cients have more or less
the same size as those in the resultant [2, �4.2]. How-
ever, the size of the coe�cients of the lexicographic
Gröbner basis in the intermediate computations may
be quite large. A standard approach for avoiding such
intermediate growth is to use modular computations
and the Chinese Remainder Theorem [1]. The dif-
�culty being the design of a deterministic algorithm
(rather than a Monte-Carlo algorithm). We show how
this approach can be applied here.
Without loss of generality, we can assume that the

two input polynomials P and Q have integer coe�-
cients (rather than rational). For brevity, we only de-
scribe how to compute the roots outside the vertical
asymptotes; the roots on the vertical asymptotes are
treated similarly. Let µ be a prime number larger than
pq, Zµ = Z

µZ , and let φµ be the canonical surjection

Z[x, y]→ Zµ[x, y] that transforms the polynomial co-
e�cients modulo µ. We �rst check that (i) φµ(ap) 6=
0 and φµ(bq) 6= 0, then we compute Fres(P,Q)
and Fres(φµ(P ), φµ(Q)) (Eq. (2)) and test whether
(ii) φµ(Fres(P,Q)) = Fres(φµ(P ), φµ(Q)) and (iii)
degree(φµ(Fres(P,Q))) = degree(Fres(P,Q)). We
consider prime numbers in turn until all these prop-
erties are satis�ed. Then, considering polynomials in
Zµ[x, y], we solve the system {φµ(P ), φµ(Q)} as de-
scribed in Sections 1.2 and 1.3.

Lemma 2 The sum of the degrees of the systems (the
degree of a system being the number of its complex
roots counted with multiplicity) in the decomposition
applied to φµ(P ) and φµ(Q) and performed in Zµ[x, y]
is greater than or equal to the sum of the degrees of
the systems in the decomposition of P and Q per-
formed over the rationals.

An important remark is that since the RUR pre-
serves multiplicities, the degree of a system is the de-
gree of the �rst polynomial of its RUR, even when
considered over Zµ[x, y], as soon as µ > pq [4]. If the
sum of the degrees of the systems obtained by a com-
putation modulo µ is strictly greater than the sum of
the degrees of the systems obtained by the computa-
tion over the rationals, we say that µ is an unlucky

prime. The di�culty is of course to detect unlucky
primes.
Our algorithm selects a set of primes µ (as described

above), decomposes the system {φµ(P ), φµ(Q)}, and
determines a RUR for each Sk over Zµ[x, y]. If the
sums of the degrees of Sk are not the same for all
considered primes, the primes for which this sum is
not minimal are unlucky, and we discard these primes.
Otherwise, either all primes are lucky or they are all
unlucky. We then use the Chinese Remainder Theo-
rem to lift the RURs of the systems Sk.
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We then check whether the roots of the set of re-
sulting RURs (f, gx, gy, g) of each Sk are indeed roots
of the system {P,Q} with the correct multiplicities.
Checking whether the roots are correct is done by

substituting the rational coordinates x = gx(t)
g(t) and

y =
gy(t)
g(t) in P and Q and checking that f divides its

numerator. A root of multiplicity m corresponding to
a root t of f can be veri�ed similarly by substitut-
ing the RUR coordinates in the i-th derivatives of P
and Q with respect to y (for i from 1 to m− 1), and
checking that t is a root of their gcd with f (more pre-
cisely, let f = Πif

i
i be the decomposition with respect

to multiplicities of the �rst poly of the RUR then t
is a root of fm, and one must check that fm divides
the numerators of the derivatives of P and Q after
substitution).

Similarly, the multiplicity m of a root (α, β) of the
system (corresponding to a root t of f) can be checked
to be correct by substituting the RUR coordinates in
the i-th derivatives of P and Q with respect to y (for i
from 1 to m−1), and checking that t is a root of their
gcd with f . Checking that t is not a root of the m-
th derivative is unnecessary because m is necessarily
larger than or equal to the correct multiplicity of the
root (by the proof of Lemma 2).

If, for all Sk, all the roots of the RURs are indeed
roots of {P,Q}, and if their multiplicities are correct,
the set of roots (with multiplicities) is necessarily cor-
rect by Lemma 2. Otherwise we add some new primes
and lift again the result. (We omit here some details,
including that a prime may also be unlucky for the
computation of the RURs.)

2 Application to the topology of plane curves

We now consider the problem of computing e�ciently
the topology of a real plane algebraic curve Cf de-
�ned by a bivariate polynomial f in Q[x, y]. Isotop
[2] is an algorithm that uses Gröbner basis and RUR
computation as a black box for isolating the critical
points of Cf , that is the points that are solutions of

{f, fy} with fy = ∂f
∂y . Compared to other algorithms,

Isotop is particularly e�cient on non-generic curves
(i.e., curves with several critical points on some ver-
tical line) because they are treated in the original co-
ordinate system without shearing. However, Isotop
is less e�cient on some types of generic curves, in
particular for (i) �random� curves for which the mul-
tiplicity of all critical points in their �ber is 2, and (ii)
generic curves such that the multiplicity (in the �ber)
of some critical points is high. In case (i), the Gröb-
ner basis computation is expensive compared to the
sub-resultant sequence decomposition approach of [3]
because the decomposition leads to a unique system
S1. In case (ii), the RUR computation (performed as
a black box on a Gröbner basis of {f, fy}) turns out

to also be expensive compared to the decomposition
approach because multiplicities in the initial system
are kept (refer to [2] for details).
Our contribution is to change the Gröbner basis and

RUR black box by the solver presented in section 1.
The idea being to decompose the input system when
possible while keeping RUR approach for solving these
systems. This yields two main changes to the Isotop
algorithm: the way to compute critical points, and to
determine multiplicities in �bers.

Computing critical points of the curve Cf . Crit-
ical points of Cf are the solutions of the system
S = {f, fy}. We isolate these solutions by decom-
posing S in triangular systems Si and computing their
RURs according to the algorithm presented in Sect. 1.

Computing the multiplicities of critical points
in their �bers. For a point p = (α, β) on the curve
Cf , the multiplicity of p in its �ber denoted by
mult(f(α, y), β) is de�ned as the multiplicity of β in
the univariate polynomial f(α, y). Solving the sys-
tems Si with RURs enables to preserve the multiplic-
ities and, hence, to compute the multiplicities in the
�bers even if there are several critical points with the
same x-coordinate:

Proposition 3 If p is a critical point of Cf then it is
a solution of some system Si, and its multiplicity in
its �ber is its multiplicity is Si plus one.

Preliminary experiments. We have computed the
ratio of running times of the original Isotop algorithm
with its new version, Isotop2, using our solver as ex-
plained in Section 2. As expected the ratio is large for
generic curves (a ratio between 5 and 14 on curves of
degree between 10 and 20) and we also have a signif-
icant gain for non-generic curves (a ratio between 1.5
and 15 for degrees between 12 and 28). These prelim-
inary tests hence con�rm the theoretical analysis that
our approach automatically selects the best strategy
in any case.
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