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Online Hitting Sets In A Geometric Setting Via Vertex Ranking
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Abstract

We consider the problem of hitting sets online. The

hypergraph (i.e., range-space consisting of points and

ranges) is known in advance. However, the ranges to

be stabbed are input one-by-one in an online fash-

ion. The online algorithm must stab each range upon

arrival. An online algorithm may add points to the

hitting set but may not remove already chosen points.

The goal is to use the smallest number of points. The

best known competitive ratio for online hitting sets

by Alon et al. [1] is O(log n · logm) for general hyper-

graphs, where n and m denote the number of points

and the number of ranges, respectively. We consider

three special classes of hypergraphs.

The first setting consists of subsets of nodes of a

given graph that induce connected subgraphs. We

show how vertex ranking can be employed to design

a simple online algorithm, the competitive ratio of

which equals the number of colors used by the ver-

tex ranking. When the underlying graph is a planar

graph (e.g., a Delaunay triangulation) with n vertices,

we obtain an optimal O(
√

n)-competitive ratio. We

remark that the analysis of the competitive ratio of

the algorithm of [1] only proves an O(n)-competitive

ratio for this case.

In the second setting, we consider subsets of a given

set of n points in the Euclidean plane that are induced

by half-planes. We apply the first setting to obtain an

O(log n)-competitive ratio. We also prove an Ω(log n)

lower bound for the competitive ratio in this setting.

In the third setting, we consider subsets of a given

set of n points in the plane induced by unit discs.

Since the number of subsets in this setting is O(n2),

the competitive ratio obtained by Alon et al. is

O(log2
n). We introduce an algorithm with O(log n)-

competitive ratio. We also show that any online al-

gorithm for this problem has a competitive ratio of

Ω(log n), and hence our algorithm is optimal.

1 Introduction

In the minimum hitting set problem, we are given

a hypergraph (X, R), where X is the ground set of

points and R is a set of hyperedges. The goal is
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to find a finite set S ⊆ X such that every hyper-

edge is stabbed by S, namely, every hyperedge has a

nonempty intersection with S.

The minimum hitting set problem is a classical NP-

hard problem [15], and remains hard even for geomet-

rically induced hypergraphs (see [12] for several ref-

erences). A sharp logarithmic threshold for hardness

of approximation was proved by Feige [11]. On the

other hand, the greedy algorithm achieves a logarith-

mic approximation ratio [14, 7]. Better approxima-

tion ratios have been obtained for several geometri-

cally induced hypergraphs using specific properties of

the induced hypergraphs [12, 17, 2]. Other improved

approximation ratios are obtained using the theory

of VC-dimension and ε-nets [4, 10, 8]. Much less is

known about online versions of the hitting set prob-

lem.

In this paper, we consider an online setting in which

the set of points X is given in the beginning, and the

ranges are introduced one by one. Upon arrival of

a new range, the online algorithm may add points

(from X) to the hitting set so that the hitting set also

stabs the new range. However, the online algorithm

may not remove points from the hitting set. We use

the competitive ratio, a classical measure for the per-

formance of online algorithms [19, 3], to analyze the

performance of online algorithms.

Alon et al. [1] considered the online set-cover prob-

lem for arbitrary hypergraphs. In their setting, the

ranges are known in advance, and the points are intro-

duced one by one. Upon arrival of an uncovered point,

the online algorithm must choose a range that covers

the point. Hence, by replacing the roles of ranges and

points, their setting is equivalent to our setting. The

online set cover algorithm presented by Alon et al. [1]

achieves a competitive ratio of O(log n log m) where n

and m are the number of points and the number of hy-

peredges respectively. Note that if m ≥ 2n/ log n, the

analysis of the online algorithm only guarantees that

the competitive ratio is O(n); a trivial bound if one

range is chosen for each point. On the other hand, in

many geometric settings the underlying hypergraph

has a bounded VC-dimension which implies that the

number of hyperedges is polynomial in the number of

points (see, e.g., [18]). If m is polynomial in n, their

algorithm achieves a competitive ratio of O(log2
n).

Since there is no matching lower bound of Ω(log2
n)

for the competitive ratio, it might be the case that

there is an algorithm with an O(log n)-competitive
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ratio for such hypergraphs.

We present online hitting set algorithms for spe-

cial classes of hypergraphs, some with bounded VC-

dimension and some with linear VC-dimension. These

algorithms are based on a novel relation between ver-

tex ranking [16] and hitting sets.

The first class of hypergraphs that we consider, is

induced by connected components of a given graph.

The input of the algorithm is a graph G = (V, E), and

the adversary chooses subsets V
′ ⊆ V such that the

induced subgraph G[V ′] is connected. An application

for such a setting is the placement of servers in vir-

tual private networks (VPNs). Each VPN is a subset

of vertices that induce a connected subgraph, and re-

quests for VPNs arrive online. The algorithm selects

a location for each VPN, and the goal is to select as

few servers as possible.

For the case of hypergraphs induced by connected

components of graph, we show that one can use vertex

ranking to design an efficient online algorithm where

the competitive ratio equals the number of colors used

by a vertex ranking. In particular, for forests on n

vertices, our algorithm achieves an optimal O(log n)-

competitive ratio, and for planar graphs our algorithm

achieves O(
√

n)-competitive ratio. This class is of

particular interest since the VC-dimension of such a

hypergraph is not bounded. For example, if G is a star

(i.e., a vertex v with n− 1 neighbors), the number of

subsets of vertices that induce a connected graph is

2n−1. However, the star has a vertex ranking that

uses just two colors, hence, the competitive ratio of

our algorithm in this case is 2. This is easily seen to

be the best competitive ratio that can be achieved. If

G is a planar graph, then G admits a vertex ranking

that uses O(
√

n) colors, and the competitive ratio of

our algorithm is O(
√

n). This is an improvement over

the analysis of the algorithm of Alon et al. [1] which

only proves a competitive ratio of O(n). Thus, our

algorithm is useful even in hypergraphs whose VC-

dimension is unbounded.

Two more classes of hypergraphs are obtained ge-

ometrically as follows. In both settings we are given

a set X of n points in the plane. In one hypergraph,

the hyperedges are intersections of X with half planes.

In the other hypergraph, the hyperedges are intersec-

tions of X with unit discs. Our main result is an on-

line algorithm for the hitting set problem for points

in the plane and unit discs (or half-planes) with an

optimal competitive ratio of O(log n). The compet-

itive ratio of this algorithm improves the O(log
2
n)-

competitive ratio of Alon et al. by a logarithmic fac-

tor. An application for points and unit discs is the

selection of access points or base stations in a wire-

less network. The points model base stations and the

disc centers model clients. The reception range of

each client is a disc, and the algorithm has to select a

base station that serves a new uncovered client. The

goal is to select as few base stations as possible.

2 Preliminaries

Let (X, R) denote a hypergraph, where R is a set

of nonempty subsets of the ground set X . Members

in X are referred to as points, and members in R are

referred to as ranges (or hyperedges). A subset S ⊆ X

stabs a range r if S ∩ r 6= ∅. A hitting set is a subset

S ⊆ X that stabs every range in R. In the minimum

hitting set problem, the goal is to find a hitting set

with the smallest cardinality.

In this paper, we consider the following on-

line setting. The adversary introduces a sequence

σ , {ri}
s
i=1

of ranges. Let σi denote the prefix

{r1, . . . , ri}. The online algorithm computes a chain

of hitting sets C1 ⊆ C2 ⊆ · · · such that Ci is a hitting

set with respect to the ranges in σi.

The competitive ratio of the algorithm is defined as

follows. Let opt(σ) ⊆ X denote a minimum cardinal-

ity hitting set for the ranges in σ. Let alg(σ) ⊆ X

denote the hitting set computed by an online algo-

rithm alg when the input sequence is σ. Note that

the sequence of minimum hitting sets {opt(σi)}i is

not necessarily a chain of inclusions. The competitive

ratio of an online hitting set algorithm alg is defined

as the supremum, over all sequences σ of ranges, of

the ratio |alg(σ)|/|opt(σ)|.

3 Summary of Our Results

Connected Subgraphs. We consider the following

setting of a hypergraph induced by connected sub-

graphs of a given graph. Formally, let G = (V, E) be

a graph. Let H = (V, R) denote the hypergraph over

the same set of vertices V . A subset r ⊆ V is a hy-

peredge in R if and only if the subgraph G[r] induced

by r is connected.

We need the notion of a vertex ranking of a

graph[16]. A vertex ranking is a function c : V → N

that satisfies the following property: For any pair of

vertices u, v ∈ V , if c(u) = c(v), then, for any simple

path P in G connecting u and v, there is a vertex w in

P such that c(w) > c(u). Notice that, in particular, a

vertex ranking of a graph G is also a proper coloring of

G since adjacent vertices must get distinct colors. For

a subset X
′ ⊂ X , let cmax(X

′) , max{c(v) | v ∈ X
′}.

It is easy to see that if c is a vertex ranking, then

|{v ∈ r | c(v) = cmax(r)}| = 1, for every r ∈ R. Thus,

let vmax(r) denote the (unique) vertex v in r such that

c(v) = cmax(r).

Our first result is an online hitting set algorithm for

connected subgraphs.

Theorem 1 Let c : V → N denote a vertex ranking
of a graph G = (V, E). Then there exists an online
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hitting set algorithm for the connected subgraphs of
G with a competitive ratio of cmax(V ).

By [16], planar graphs admit vertex rankings with

cmax(V ) = O(
√

|V |). Therefore, Theorem 1 implies

that the competitive ratio of our algorithm for con-

nected subgraphs of planar graphs is O(
√

n). We also

prove that this competitive is optimal.

Theorem 2 The competitive ratio of every online
hitting set algorithm for connected subgraphs of pla-
nar graphs is Ω(

√
n).

Points and Half-Planes. We prove the following re-

sults for hypergraphs in which the ground set X is a

finite set of n points in R
2 and the ranges are all sub-

sets of X that can be cut off by a half-plane. Namely,

each range r is induced by a line Lr such that r is

the set of points of X in the half-plane below (respec-

tively, above) the line Lr.

Theorem 3 The competitive ratio of every online
hitting set algorithm for points and half-planes is
Ω(log n).

Theorem 4 There exists an online hitting set algo-
rithm for points and half-planes that achieves a com-
petitive ratio of O(log n).

Points and Congruent Discs. We prove the follow-

ing results for hypergraphs in which the ground set

X is a finite subset of n points in R
2 and the ranges

are intersections of X with unit discs. Namely, a unit

disc d induces a range r = r(d) defined by r = d ∩X .

Theorem 5 The competitive ratio of every online
hitting set algorithm for points and unit discs is
Ω(log n).

Theorem 6 There exists an online hitting set algo-
rithm for points and unit discs that achieves a com-
petitive ratio of O(log n).

4 Vertices and Connected Subgraphs

4.1 Algorithm Description

A listing of Algorithm hs appears as Algorithm 1.

The algorithm is input a graph G = (V, E) and a

vertex ranking c : V → N. The sequence σ = {ri}i of

subsets of vertices that induce connected subgraphs is

input online.

Algorithm 1 hs(G, c) - an online hitting set for con-

nected subgraphs, given a vertex ranking c.

Require: G = (V, E) is a graph and c : V → N is a

vertex ranking.

1: C0 ← ∅
2: for i = 1 to ∞ do {arrival of a range ri}
3: if ri is not stabbed by Ci−1 then

4: Ci ← Ci−1∪{vmax(ri)} {add the vertex with

the max color in ri}
5: else

6: Ci ← Ci−1

7: end if

8: end for

4.2 Analysis of The Competitive Ratio

Definition 1 For a color a, let σ(a) denote the subse-
quence of σ that consists of ranges that satisfy: (i) ri

is not stabbed by Ci−1, and (ii) cmax(ri) = a.

The following lemma implies a lower bound on the

(offline) minimum hitting set of the ranges in σ(a).

Lemma 7 If ri, rj ∈ σ(a), then the subgraph G[ri ∪
rj ] induced by ri ∪ rj is not connected. Hence, the
ranges in σ(a) are pairwise disjoint.

Proof. Clearly, cmax(ri ∪ rj) =

max{cmax(ri), cmax(rj)} = a. Assume that ri ∪ rj

induces a connected subgraph. Since c is a ver-

tex ranking, we conclude that ri ∪ rj contains

exactly one vertex colored a. This implies that

vmax(ri) = vmax(rj). If j > i, then the range rj

is stabbed by Cj−1 since it is stabbed by Ci, a

contradiction. �

Proof. [Proof of Theorem 1] Algorithm hs satisfies

|hs(σ)| =
∑

a∈N
|σ(a)|. But

∑

a∈N
|σ(a)| ≤ cmax(V ) ·

maxa∈N |σ(a)|. By Lemma 7, each range in σ(a) must

be stabbed by a distinct vertex, thus |opt(σ)| ≥
maxa∈N |σ(a)|, and the theorem follows. �

Corollary 8 Let G = (V, E) be a planar graph and
let H be the hypergraph consisting of V together
with all subsets of vertices inducing connected sub-
graphs. Then there is an online hitting set for H with
competitive ratio of O(

√
n).

Proof. The proof uses the fact that there exists a

vertex ranking for G with a total of O(
√

n) colors [16].

Combining such a vertex ranking with Algorithm hs

and using Theorem 1 completes the proof. �

Remark 1 The above corollary applies to arbitrary
graphs with small balanced separators. Let G =

(V, E) be a graph such that every subgraph with m

vertices has a balanced separator with O(mα) ver-
tices, for some fixed 0 < α ≤ 1. Then there is an
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online hitting set algorithm for the connected sub-
graphs with competitive ratio of O(nα). The proof
uses all of the above mentioned ingredients, replacing√

n with n
α.

For the special case of trees, since there is always
a balanced separator with 1 vertex, it is easily seen
that trees admit vertex ranking with O(log n) colors
and hence, Algorithm hs achieves competitive ratio of
O(log n). This bound is optimal as it holds as a lower
bound even when the tree is a simple path.

5 Open Problems

The main challenge left in this paper is to extend the

result for unit discs to arbitrary discs. We conjecture

that there exists an online hitting set algorithm for

hitting arbitrary discs with a subset of a given set of

n points in the plane, which has competitive ratio of

O(log n). A more difficult problem is to design an

online hitting set algorithm with a logarithmic com-

petitive ratio for any hypergraph with bounded VC-

dimension. To the best of our knowledge, there is no

better lower bound except for Ω(log n) for this prob-

lem.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor. The Online Set Cover Problem. SIAM Jour-
nal on Computing, 39:361, 2009.

[2] B. Ben-Moshe, M. Katz, and J. Mitchell. A
constant-factor approximation algorithm for optimal
terrain guarding. In Proceedings of the sixteenth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 515–524. Society for Industrial and Applied
Mathematics, 2005.

[3] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis, volume 2. Cambridge University
Press Cambridge, 1998.
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