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Abstract

We present an algorithm for approximating the local
feature size of point samples used for reconstructing
a 2-manifold in R3. Our algorithm improves previ-
ous results by simultaneously achieving the following
two goals: it computes an approximation of the local
feature size as well as the number of sample points
needed for this approximation using local informa-
tion only and at the same time is able to deal with
2-manifolds with a smooth boundary.

1 Introduction

Reconstructing a manifold from point samples in R3

is a fundamental problem that has attracted con-
siderable interest both in Computer Graphics and
Computational Geometry. Most algorithms follow
the general framework introduced by Amenta and
Bern [2] and perform the reconstruction based upon
the Voronoi diagram for the sample points. Comput-
ing a Voronoi diagram in R3, however, has a quadratic
worst-case complexity, and thus Funke and Ramos [7]
present a careful analysis of their variant of the Co-
Cone algorithm to show that a reconstruction is pos-
sible in near-linear time. Building upon this, Du-
mitriu et al. [5, 6] propose to first decimate the point
set in a preprocessing step using information locally
available before computing the (graph) Voronoi dia-
gram for the reduced point set; this algorithm does
not rely on CoCone. Recently, Dey et al. [4] con-
sidered the case of reconstructing a 2-manifold in R3

that has a smooth boundary.
We demonstrate how to modify the algorithm by

Dumitriu et al. [5, 6] to be able to reconstruct a 2-
manifold in R3 that has a smooth boundary. As it
turns out, we only need to replace one single subrou-
tine, namely the approximation of the so-called local
feature size, by a variant that can handle (smooth)
boundaries. Our algorithm builds upon ideas pre-
sented by Funke and Ramos [7] and we derive suffi-
cient conditions for the correctness of the reconstruc-
tion and comment on the approximation quality of our
algorithm. Unlike the algorithm of Dey et al. [4], our
algorithm does not rely on a global sampling condition
with a sampling constant known to the algorithm but
retains the property that the density of the sampling
may be locally different.

2 Preliminaries

Amenta and Bern [2] introduced the local feature size
as central concept used for reconstructing smooth
(closed) surfaces. For any point x on the manifold Γ,
the local feature size lfs (x) is defined as the distance
of x to the medial axis of Γ. In different terms, the
local feature size in a point x ∈ Γ is the radius of
the smaller of the two largest balls touching Γ in x
from the inside resp. from the outside and not con-
taining any other point of Γ in their interior. Thus,
the local feature size captures the curvature and the
folding of Γ. It is known that the (topological) cor-
rectness of a reconstruction algorithm depends on the
density of the set S ⊂ Γ of sample points used for the
reconstruction relative to the local feature size.

Definition 1 A discrete subset S of a smooth 2-ma-
nifold Γ ⊂ R3 is an ε-sample for Γ iff for every point
x ∈ Γ there is a point s ∈ S with |xs| ≤ ε · lfs (x).

Dumitriu et al.’s algorithm [5, 6] (Algorithm 1) first
uses a subroutine from Funke and Ramos [7] to com-
pute an approximation of ε · lfs (s) for each s ∈ S
and then connects two sample points s1, s2 ∈ S by an
edge if and only if |s1s2| ≤ c ·ε ·max {lfs (s1) , lfs (s2)}
where c is a constant used for compensating for the
approximation error. Using the resulting neighbor-
hood graph, the algorithm computes a k-hop-stable
subsample, locally identifies the connectivity of the
induced subgraph, and computes a topologically cor-
rect reconstruction of the manifold. Finally, all sam-
ple points not in the subsample are reinserted to refine
the reconstruction.

Figure 1(a) shows a situation where the presence of
the boundary of Γ (drawn as a thick line) results in
an illegal edge s1s2 to be constructed. Even a higher
sampling density close to the boundary does not alle-
viate this problem–see Figure 1(b).

Γ
s1

s2

(a) Illegal edge s1s2. (b) Non-unique reconstruction.

Figure 1: Problems induced by boundaries.
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Algorithm 1 Learning a 2-manifold in R3 [5, 6].
1: Compute an approximation φ(s) for ε · lfs (s) for

s ∈ S using a routine by Funke and Ramos [7].
2: Construct a neighborhood graph on S by connect-

ing s1, s2 ∈ S if |s1s2| ∈ O(max{φ(s1), φ(s2)}).
3: Compute Ssub ⊆ S as a maximal k-hop stable set

in the neighborhood graph.
4: Construct the graph Voronoi diagram of S with

respect to Ssub.
5: Use the graph Voronoi diagram to identify certi-

fied adjacencies between points in Ssub.
6: Identify faces and triangulate non-triangular

faces.
7: Reinsert points from S \ Ssub using a routine by

Funke and Ramos [7].

One of the key observations by Dumitriu et al. [5],
however, is that Steps 1 and 2 guarantee that one can
reconstruct a manifold from an ε-sample using only
information locally available during the remainder of
the algorithm (Steps 3–7). The contribution of this
work is a replacement for Step 1, i.e. an approxima-
tion algorithm for the local feature size that uses only
information locally available and can handle the case
where the manifold to be reconstructed has a smooth
boundary. This, however, requires the sampling con-
dition to be modified.

3 Local feature size for 2-manifolds with boundary

In the remainder of this paper, we will assume that Γ
is a smooth 2-manifold in R3 and that ∂Γ is a smooth
1-manifold. We extend the definition of the local fea-
ture size to the case of 2-manifolds with a boundary.

Definition 2 For the medial axis M∂Γ of the bound-
ary ∂Γ and the medial axis MΓ◦ of the interior Γ◦ we
define

lfs∂Γ(x) = min {dist(x,M∂Γ)} for x ∈ ∂Γ
lfs∂Γ(x) = miny∈∂Γ {lfs∂Γ(y) + |xy|} for x ∈ Γ◦

lfsΓ◦(x) = min {dist(x,MΓ◦)} for x ∈ Γ

The local feature size of a point x ∈ Γ then is defined
as lfs (x) := min {lfs∂Γ (x) , lfsΓ◦ (x)}.

Dey et al. also define a (similar) variant of the lo-
cal feature size but then use it to define “a global
measure ρ = infx∈Γ lfs (x)” [4, p. 1373] that is know
to the algorithm and used for defining the (global)
quality of the sample. In contrast, we follow Funke
and Ramos [7] and approximate the local feature size
locally. The correctness of the algorithms of Funke
and Ramos [7] and Dumitriu et al. [5, 6] is based
upon the observation that the local feature size is a 1-
Lipschitz function, i.e., a non-negative function f with
f(x) ≤ f(x′) + |xx′| for all x, x′. Lemma 1 allows us

to reuse their (algorithm and) correctness proof for
points “far away” from ∂Γ:

Lemma 1 The local feature size as defined in Defi-
nition 2 is a 1-Lipschitz function.

Following Funke and Ramos’ approach, we con-
sider the Voronoi cell Vor (s) of a sample point s
restricted to the (unknown) manifold Γ. One then
can show that the distance from s to the furthest ver-
tex v in Vor (s) ∩ Γ is an approximate lower bound
for ε

1−ε · lfs (s). Since Γ is unknown to the algorithm,
we appoximate Vor (s) ∩ Γ by Vor (s) ∩ T̃s where T̃s

is an approximation of the plane Ts tangent to Γ in s.
Since Γ has a boundary, ∂Γ can cross Vor (s) such that
some Voronoi vertices in Vor (s) ∩ T̃s do not have a
corresponding vertex on Γ—see Figure 2.

vs

s1s2

s3

s4

s5
∂Γ

T̃s ≈ Ts

Figure 2: ∂Γ crosses Vor (s).

To avoid the lower bound for ε
1−ε · lfs (s) to be

(arbitrarily) biased by such a cut-off vertex v, the
main challenge is to restrict the “search space” for
the Voronoi vertices on Vor (s)∩ T̃s to areas certified
not to contain any part of the boundary or – if it
crosses the cell – to exclude cut-off Voronoi vertices
while computing the approximation.

4 Safeguarding Voronoi cells from ∂Γ

To simplify notation, we define what we call a bicone;
bicones will be shown to contain the locally relevant
part of the manifold (including the boundary).

Definition 3 Let x1, x2 ∈ R, x1 6= x2, r ≥ |x1x2|/2,
and let E be a plane containing both x1 and x2. Let
CE,1 and CE,2 denote the two circles in E that have
radius r and pass through x1 and x2. The bicone
Ccone

x1,x2,r of x1 and x2 with parameter r then is defined
as the union of the intersections of CE,1 and CE,2 for
all planes E containing x1 and x2 (see Figure 3):

Ccone
x1,x2,r :=

⋃
E3x1,x2

(CE,1 ∩ CE,2)

x1

x2

gx1x2

Ccone
x1,x2,|x1x2|

x2

x1
E

CE,1CE,2

CE,1 ∩ CE,2

Figure 3: Bicone Ccone
x1,x2,r of x1 and x2 w.r.t. r.
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In Lemma 5, we name the conditions that guaran-
tee the existence of a smooth curve connecting two
points x1 and x2 inside a bicone Ccone

x1,x2,r for a prop-
erly defined r. For Corollary 2 and Lemmas 3 and 4,
we consider the three points x, x1, x2 ∈ Γ where
|xx1|, |xx2|, |x1x2| ≤ 1

2 · lfs(x) and where x1 and x2

realize an angle of at most 1
3 · π at apex x. Based

upon these points, we define r := max {|xx1|, |xx2|}.

Corollary 2 There exist three continuous curves
γxx1 , γxx2 , γx1x2 ⊂ Γ connecting x and x1, x and x2,
and x1 and x2 with γxx1 ⊂ Ccone

x,x1,r, γxx2 ⊂ Ccone
x,x2,r and

γx1x2 ⊂ Ccone
x1,x2,r.

Lemma 3 (see Figure 4(a)) The Voronoi region
of x with respect to x1 and x2 lies outside of Ccone

x1,x2,r.

Lemma 4 (see Figure 4(b)) The patch of Γ
bounded by γ := γxx1γx1x2γx2x does not contain any
point of ∂Γ in its interior.

π
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x1,x2,|xx2|

x′
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x′
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x′
1
,x′
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γx1x2

V (x)

(a) γx1x2 does
not cross Vor (x).
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x
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γx2x

(b) Patch
bounded by
γxx1γx1x2γx2x.
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(c) Closed curve γ does
not cross Vor (s).

Figure 4: Configurations of Lemmas 3, 4, and 5

Combining the above results, we can show that the
Voronoi cell of some (sample) point x ∈ Γ restricted
to the intersection with Γ is guaranteed not to contain
any point from ∂Γ if there are enough (sample) points
distributed around it. More precisely, the guarantee
holds if every wedge of a ball with radius 1

2 · lfs(x)
centered at x contains at least one other sample point.

Lemma 5 (See Figure 4(c)) Let x, x0, . . . , x`−1

be points on Γ for which the following holds:

� |xxi| < 1
2 · lfs (x) for all i ∈ {0, . . . , `− 1}.

� ∀i ∈ {0, . . . , ` − 1} : ∃j, k ∈ {0, . . . , ` − 1} \ {i} :
∠(xj , x, xi) ≤ 1

3 · π ∧ ∠(xk, x, xi) ≥ 5
3 · π

Then there is no point of ∂Γ inside the intersection
of Γ and the Voronoi cell of x, i.e.

(Γ ∩Vor(x))◦ ∩ ∂Γ = ∅

5 Sampling 2-manifolds with a boundary

In Lemma 5, we considered a situation, which allows
us to account the (restricted) intersection of Vor (s)

with Ts for approximating ε · lfs(s) by the largest dis-
tance of a point v ∈ Vor (s) ∩ Ts to s. This config-
uration of points describe the distribution of “close”
sample points around s. The closeness of these sample
points is guaranteed by the following theorem:

Theorem 6 Let S be an ε-sample of Γ. Then, for
each s ∈ S, we have at least k 1

2 ,ε ∈ O(1/ε2) nearest

neighbors {s1, . . . , sk 1
2 ,ε
} ⊂ S such that dist (s, si) <

1
2 · lfs(s) for each si ∈ {s1, . . . , sk 1

2 ,ε
}.

The final property of the sample points has to de-
scribe a “good” distribution of these k 1

2 ,ε ∈ O(1/ε2)
nearest neighbors around s. Figure 1(b) illustrates
that the standard sampling condition does not guar-
antee a unique reconstruction.

Definition 4 A discrete subset S ⊂ Γ is an (ε, k)-
sample iff S is an ε-sample and the following condi-
tion holds for each s ∈ S: for any point y ∈ Γ with
|ys| ∈ [ ε

1+ε · lfs(s),
2·ε
1−ε · lfs(s)], there exists a point

s′ ∈ S who is one of the k nearest neighbors of s
and for which ∠(y, s, s′) ≤ 1

6 · π hold.

For an (ε, k)-sample, we can prove that the premise
of Lemma 5 holds for every sample point which has at
least a distance of ε

1−ε ·lfs(s) to ∂Γ. Also, we can com-
pute a restriction Hs of Vor (s) ∩ Ts for all other sam-
ple points by analyzing the k ≤ k 1

2 ,ε nearest neighbors
of s, so that ∂Γ do not intersect Hs ∩Vor (s).

As mentioned in Section 3, the algorithm relies on
an approximation T̃s of the plane Ts tangent to a sam-
ple point s ∈ Γ. Whereas the Funke and Ramos’ base
algorithm works with every (in an asymptotic sense)
good approximation, our variant requires an absolute
bound on the deviation of the planes’ normals:

Lemma 7 Let S be an (ε, k)-sample with ε ≤ 1
16 and

k ≤ k 1
2 ,ε. We can compute an approximation T̃s of the

plane Ts tangent to Γ in s ∈ S with ∠(Ts, T̃s) ≤ 17◦

by inspecting k nearest neighbours.

6 Approximating the local feature size

Summarizing the results from Section 4, we obtain
the following algorithm for approximating the local
feature size for an (ε, k)-sample of a 2-manifold with
a boundary (Algorithm 2).

Substituting this algorithm for Step 1 in Algo-
rithm 1 and observing that the remaining steps work
on information locally available in the neighborhood
graph, we obtain an algorithm for reconstructing a
smooth (orientable or non-orientable) 2-manifold in
R3 with a boundary.
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Algorithm 2 Approximating lfs(s) for s ∈ S.

Require: S ((ε, k)-sample with ε ≤ 1
16 and k ≤ k 1

2 ,ε)
1: for each s ∈ S do
2: NH s :=NN(S,s, k). . Find k NNs of s in S.
3: T̃s :=TangPlane(NH s, s). . See Lemma 7.
4: Vor T̃s

(s) := Vor (s) ∩ T̃s.
5: if s does not fulfill Lemma 5’s premise then
6: Vor T̃s

(s) := Vor T̃s
(s) ∩Hs.

7: v := Voronoi vertex of Vor T̃s
(s) furthest to s.

8: φ(s) := |vs|.
9: Return φ.

7 Analysis of the algorithm

A direct implementation of Algorithm 2 results in a
quadratic running time due to the complexity of com-
puting the Voronoi diagram in R3. For this version,
however, we can prove the following:

Theorem 8 Algorithm 2 computes φ(s) for each
s ∈ S such that φ(s) ≤ 1.135 · ε

1−ε · lfs (s).

If one is willing to trade approximation quality
for running time, one can (prove and) use that the
Voronoi cell of a sample point s with respect to its
k nearest neighbors is a “good” approximation for
the Voronoi cell used in Algorithm 2 in the sense
that the constant in Theorem 8 increases from 1.135
to no more than 1.3. In this case, the dominating
step of this algorithm is the computation of the k
nearest neighbors, which (using a well-separated pair
decomposition [3] and Theorem 6) can be done in
O( n

ε2 log n
ε2 ) time. With the exception of Step 2 (com-

puting the neighborhood graph), the remaining steps
of Algorithm 1 can be executed in the same time com-
plexity, since the subgraph worked with is not too
large [6] and re-inserting the excluded points can be
done in near-linear time [7]. Step 2 boils down to an-
swering n spherical range queries in R3 (i.e., n half-
space reporting queries in R4) which can be done in
O(n4/3 polylog n) time [1, 8].

8 Experimental Evaluation

Since we changed only the first step of Algorithm 1, we
were interested in its output, i.e. the approximation of
the local feature size. As it
is common practice, we first
assess the quality by visual
inspection: Figure 5 shows
a reconstruction of part of
the dragon model used in [6] Figure 5: Dragon’s head.

(the graph shows the union of all Delaunay duals for
the (restricted) Voronoi cells from Step 7 of Algo-
rithm 2.). We obtained a manifold with a boundary
by extracting a slice of the dragon’s head.

In addition to this visual assessment, we also
evaluated the approximation quality of our algorithm
for estimating the
local feature size.
To this end, we
constructed samples
S◦ and SS of two
manifolds Γ◦ and
ΓS in R3 in a way
that we were able

S
S

S
◦

Γ
◦

Γ
S

Figure 6: Manifolds and samples.

to derive the local feature size of the manifold from
the construction algorithm and thus were able to also
numerically assess the quality of our approximation
algorithm. By construction, the correct values of φ◦

(for S◦) and thus also of φS (for SS) can be shown
to be approximately 1.85. Our approximation of
ε · lfs computes in both cases values in the range
[1.83, 1.87], that is very close to the actual value.

9 Conclusions

We have presented a new sampling condition that al-
lows for approximating the local feature size of the
points on a 2-manifold with a boundary embedded
in R3. The resulting approximation algorithm builds
upon previous work but has the advantage of simul-
taneously being able to handle manifolds with bound-
aries and not having to assume a global lower bound
on the local feature size. The experimental evalua-
tion tightly supports the theoretical analysis of the
approximation quality.
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