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Long Monotone Paths in Convex Subdivisions
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Abstract

Consider a connected subdivision of the plane into
n convex regions where every vertex has degree at
most d. Then, for every vertex there is a path with
at least Ω(logd n) edges through this vertex that is
monotone in some direction. This bound is best pos-
sible.

1 Introduction

Definition 1 A direction is given by a unit vector e.
A path x(t), t ∈ I for some interval I, is monotone
in direction e if the inner product x(t) · e is a strictly
increasing function of t. A path is weakly monotone
in direction e if the inner product is a nondecreasing
function of t.

We say that a path is (weakly) monotone if it is
(weakly) monotone in some direction.

We are looking for long monotone paths in planar
subdivisions. A subdivision of the plane into n convex
regions has O(n) vertices and O(n) straight edges,
including some infinite rays. When we speak about
monotone paths, we mean paths along the vertices
and edges of this graph. To exclude some trivial cases,
we assume that the edges form a connected graph (and
we say that the subdivision is connected).

Theorem 1 Let P be a connected subdivision of the
plane into n convex faces in which every vertex has
degree at most d. Then, for every vertex v, there is a
weakly monotone path with at least Ω(logd n) edges
starting at v.

Related Results. If P is the vertical projection of
a piecewise linear convex terrain P̂ , one can apply
a polarity transform to this terrain with respect to
the paraboloid z = x2 + y2, yielding another piece-
wise linear convex terrain P̂ ∗. The projection P ∗ of
this terrain is a reciprocal diagram of P (cf. [1]): its
graph is dual to the graph of P , in the sense that ver-
tices of P ∗ correspond to faces of P and vice versa.
Each edge in P ∗ has a corresponding edge in P , and
moreover, these two edges are perpendicular. (This
last property distinguishes a reciprocal diagram from
a general drawing of the dual graph of P .)
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A monotone path in P becomes a monotone face
sequence in P ∗: in such a sequence, one can go from
a face A to an adjacent face B whenever there is a ray
in the specified direction e which crosses the common
edge of A and B in the direction from A to B.

Monotone face sequences were studied by Chazelle,
Edelsbrunner and Guibas [2]. They established the
following bound:

Theorem 2 Let Q be a subdivision of the plane into
n convex faces in which every face is adjacent to at
most d neighboring faces. Then, there is a monotone
face sequence of length at least

Ω(logd n + log n/ log log n).

Chazelle et al. showed that a monotone sequence of
this length can even be achieved by the faces inter-
sected by a line. Moreover, they showed that the
bound is tight, by giving families of subdivisions that
have no long face sequences.

Thus, for subdivisions P that are projections of
a convex terrain, the question about long monotone
paths is completely answered the applying above the-
orem for Q = P ∗.

However, for general subdivisions, the problems are
not directly related, and in fact, the answers are dif-
ferent: We will see in Section 3 that one cannot add a
term Ω(log n/ log log n) (or any other term that grows
to infinity) to the bound of Theorem 1.

Motivation. We were led to the question of Theo-
rem 2 by the complexity analysis of an algorithm for
partial matching between two finite planar point sets
under translations [4]. There, we could show that
a certain subdivision Q contained no monotone face
sequence longer than some bound X which is polyno-
mial in the input parameters. If Theorem 2 were true
with some stronger lower bound of the form Ω(nα) for
α > 0, this would have implied a polynomial bound
on the number of faces of Q.

2 Proof of Theorem 1

A basic observation for convex subdivisions is that for
any vertex v and any given generic direction e, there is
always an outgoing edge from v that is weakly mono-
tone in direction e. Theorem 1 follows quite straight-
forwardly from the following lemma:
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Figure 1: The rightmost path R(e) starting from ver-
tex v in direction e

Lemma 3 Let v be a vertex in a connected convex
planar subdivision P . Then there is a spanning tree
rooted a v and containing all infinite rays, such that
all paths starting at v are weakly monotone.

A wall of bricks shows that the lemma does not hold
with (strictly) monotone paths. However, if there are
no angles of 180◦, the statement extends to strictly
monotone paths.

Proof. For a generic direction e we can define the
rightmost path R(e) starting at v as follows, see Fig-
ure 1: We start at v and always follow the rightmost
outgoing edge that is weakly monotone in direction e
until we arrive at an unbounded ray.

Now we start rotating e clockwise. At some direc-
tion e′, R(e′) will be different from R(e). R(e) is still
weakly monotone in direction e′. Now, any vertex u
(and any edge) in the region between R(e) and R(e′)
can be reached by a monotone path in direction e′:
We simply start at u and go monotonically in the di-
rection opposite to e′ until we hit R(e) or R(e′). From
there, we follow R(e) or R(e′) to v. In this way, we
can form a spanning tree of all vertices and all in-
finite rays between R(e) and R(e′) with the desired
properties.

Continuing the rotation in this way, we eventually
reach all vertices and all infinite rays. �

3 Upper Bounds

If the maximum degree d is Ω(n), Theorem 1 gives
only a trivial statement. The example of Figure 2
shows that, indeed, there is no non-constant lower
bound on the length of monotone paths in this case,
even for a triangulation.

The graph has 2k vertices arranged on two concen-
tric rings around a central vertex and connected in a
zigzag manner. Each vertex is connected to the cen-
ter and has also an infinite ray outwards. The radius

Figure 2: A subdivision with only constant-size mono-
tone paths

of the outer ring is (at least) twice as large as the
radius of the inner ring. If we disregard the central
vertex and the infinite edges, the zigzag remains. One
can easily see that a monotone path can use at most
three successive edges of the zigzag. Since a path can
go through the center at most once and can use at
most two infinite rays, a constant upper bound fol-
lows. In fact, it is easy to show that a monotone path
can have at most eight edges.

4 Open Question

The example of Figure 2 has Ω(n) infinite rays. Are
there similar examples with constantly many rays?
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