
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Minimum-Link Paths Revisited∗.

Joseph S. B. Mitchell† Valentin Polishchuk‡ Mikko Sysikaski†

Abstract

A path or a polygonal domain is C-oriented if the
orientations of its edges belong to a set of C given
orientations; this is a generalization of the notable
rectilinear case (C = 2). We study exact and ap-
proximation algorithms for minimum-link C-oriented
paths and paths with unrestricted orientations, both
in C-oriented and in general domains. We obtain the
following results:

• An optimal algorithm for finding a minimum-link
rectilinear path in a rectilinear domain; using
only elementary data structures, our algorithm
and its analysis are simpler than the earlier ones
of [Sato, Sakanaka and Ohtsuki, 1987], [Das and
Narasimhan, 1991].

• An algorithm to find a minimum-link C-oriented
path in a C-oriented domain; our algorithm is
simpler and more time-space efficient than the
earlier one of [Adegeest, Overmars and Snoeyink,
1994].

• An extension of our techniques to find a C-
oriented minimum-link path in a general (not
necessarily C-oriented) domain.

• 3SUM-hardness of finding a minimum-link path
with unrestricted orientations (even in a C-
oriented domain). This answers a question from
the survey of Mitchell [Goodman and O’Rourke,
eds., 1997, 2004] and Problem 22 in The Open
Problems Project.

We also present approximation methods for link dis-
tance, including the following:

• A more time-space efficient algorithm to find a
2-approximate C-oriented minimum-link path.

• A notion of “robust” paths. We show how
minimum-link C-oriented paths approximate the
robust paths with unrestricted orientations to
within an additive error of 1.

• A subquadratic-time algorithm with a non-
trivial approximation guarantee for the general
(unrestricted-orientation) minimum-link paths in
general domains.

∗Longer version is available online at: http://hiit.fi/

valentin.polishchuk/ml.pdf
†Stony Brook University, jsbm@ams.stonybrook.edu
‡University of Helsinki, polishch@cs.helsinki.fi

All of our algorithms not only find minimum-link
paths but also build, within the same time and space
bounds, the corresponding link distance maps—exact
or approximate. For instance, using our algorithms,
one can construct in subquadratic time linear-size ap-
proximate (additive or multiplicative) maps for gen-
eral minimum-link paths in general domains; this is in
contrast with the exact link distance maps, which may
have quartic complexity [Suri and O’Rourke, 1986].

1 Introduction

Minimum-link problems arise in motion planning do-
mains were turning is expensive, in line simplification,
guarding applications, VLSI, wireless communication,
and other areas. An instance of the problem is speci-
fied by an n-vertex polygonal domain P with h holes,
and two points s, t ∈ P ; the goal is to find an s-t
path with fewest edges (links). In the query version
of the problem, the goal is to build a data structure
(link distance map) to answer efficiently link distance
queries to s.

We give algorithms for computing exact and ap-
proximate C-oriented minlink paths and show how
they approximate “robust” paths with unrestricted
orientations; we also give approximation algorithms
for the general minlink problem.

1.1 Previous work

If P is a simple polygon, a minlink path can be found
in linear time [7, 9, 21]. The general idea is to do the
“staged illumination” of P [8, Sections 26.4, 27.3] that
starts from illuminating the visibility polygon of s. At
the beginning of any stage the boundary between the
lit and the dark parts of P is a set of “windows”; each
window w is a chord cutting out a dark part Pw ⊂ P .
The crux of the linear-time algorithm is that Pw is
“unique” to w: the part of Pw illuminated at the next
stage is exactly what is seen from w (even if a point
p ∈ Pw is seen from another window w′ 6= w, we do
not care about shining light from w′ into Pw). At
any stage, the illumination is guided by DFS in the
dual of a triangulation of P ; since the dual is a tree,
any triangle is lit only once (triangles intersected by
windows are first lit only partially, and are fully lit at
the next stage).

In polygonal domains with holes, the algorithm of
Mitchell, Rote and Woeginger [16] computes a minlink

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

19

http://hiit.fi/valentin.polishchuk/ml.pdf
http://hiit.fi/valentin.polishchuk/ml.pdf


27th European Workshop on Computational Geometry, 2011

path in O(n2α2(n) log n) time. It was believed that a
faster algorithm is possible (e.g., in [6, p. 263] the re-
sult of [16] is called “suboptimal”). Nevertheless, the
only previously known lower bound, also due to [16],
was Ω(n log n); the same bounds for the rectilinear
case are given in [6, 14]. Also, no subquadratic-time
approximation algorithm is known.

Robustness of paths was previously addressed
in terms of distance tolerance by employing high-
clearance [18, 24, 25] or thick-paths [2, 5, 13, 17] mod-
els. Similar, distance-based robustness was consid-
ered in the context of curvature-constrained paths in
[3, 12, 23].

Minimum-link C-oriented paths in C-oriented do-
mains were studied by Adegeest, Overmars and
Snoyeink [1]. Two algorithms are presented in [1]: one
running in O(C2n log n) time and space, the other—
in O(C2n log2 n) time and O(C2n) space. Both algo-
rithms build C trapezoidations of the domain and la-
bel the trapezoids with link distance from s; this way
an O(Cn)-space structure is created that answers link
distance queries in O(C log n) time. The labeling of
the trapezoids proceeds in n steps, with label-k trape-
zoids receiving their label at step k. By induction on
k, any such trapezoid must be intersected by a label-
(k−1) trapezoid of a different orientation; hence, step
k boils down to detecting all unlabeled trapezoids in-
tersected by label-(k − 1) trapezoids. In terms of the
intersection graph of trapezoids (which has nodes cor-
responding to trapezoids and edges corresponding to
intersecting pairs of trapezoids), the labeling is the
BFS starting from the C-oriented segments through s.

The idea of performing an efficient BFS in the
intersection graph without building the (potentially
quadratic-size) graph explicitly, dates back to the
work on minimum-link rectilinear paths [6, 10, 11,
14, 15, 19, 20, 26, 27]. Imai and Asano’s [10, 11]
data structure allows one to do the BFS—and hence
find a minlink rectilinear path—in O(n log n) time
and space. Still, it was not until the work of Das
and Narasimhan [6] (and the lesser known work of
Sato, Sakanaka and Ohtsuki [20]) that an optimal,
O(n log n)-time O(n)-space BFS implementation was
developed. In the implementation, one step of the
BFS is reduced to a pair of sweeps—the UpSweep
and the DownSweep.

2 Overview of the results

Rectilinear paths in rectilinear domains The data
structures employed in [6, 20] are simpler than
the (much more general-purpose) structure of Imai–
Asano [10, 11], but they are still more complicated
than one would hope for the basic problem of find-
ing rectilinear paths amidst rectilinear obstacles. We
present a simplified implementation of the BFS step
in the intersection graph; our modification does not

affect the asymptotic time and space optimality of
the algorithm. The crux of the simplification is the
use of a single tree for storing the intersection of the
sweepline with the trapezoids that were lit at the pre-
vious step.

Another, minor modification present in our algo-
rithm comes from performing only one, upward sweep,
at any step of the BFS. The sweep starts from what
we call the “pot” trapezoids—those into which the
different-orientation trapezoids lit at the previous step
are “planted”. The planting is nothing but a means
to initialize the sweep (without the planting, it is not
clear how to discover efficiently even a single edge in
the intersection graph). While our modification saves
only a factor of 2 in running time, it serves as the basis
of our improvements for the general case of C-oriented
paths with C > 2.

C-oriented paths in C-oriented domains As noted
in [1], the efficient methods developed to perform BFS
in the trapezoids intersection graph for the rectilin-
ear version do not extend to C-oriented paths when
C > 2. We look closely at why this is the case.
One reason is that for C > 2 some trapezoids may
get labeled only partially during a BFS step; this
complicates the BFS because the intersection graph
changes from step to step, and, in the final link dis-
tance map, trapezoids may get split into subtrape-
zoids. The partial labeling and splitting are due to the
possibility that two different-orientation trapezoids do
not “straddle” each other; instead they both may be
“flush” with an obstacle edge whose orientation is dif-
ferent from the orientations of both trapezoids (this
was not the case in the rectilinear version since there
were only 2 orientations). However, such flushness
can be read off easily from lists of incident trapezoids
stored with every edge of P ; thus, discovering par-
tially labeled trapezoids becomes the easy part of the
algorithm.

After the partially labeled trapezoids are processed,
we are left with discovering unlabeled trapezoids
“fully straddled” by trapezoids labeled at the previous
step. As with the rectilinear case, it is the straddling
that leads to a superlinear-size intersection graph and
makes a subquadratic algorithm less trivial. It is
tempting to reuse here the sweeping techniques devel-
oped for the rectilinear version; the stumbling block,
though, is choosing the direction of the sweep. Indeed,
no matter in which direction the sweep proceeds, the
intersection of the sweepline with a trapezoid does not
change only at discrete “events”: while the sweepline
intersects a non-parallel side of the trapezoid, the in-
tersection changes continuously. The good news is
that this is the only reason for a continuous change
of the intersection. This prompts to get rid of the
non-parallel sides of the trapezoids by clipping them
into parallelograms, with the new sides parallel to the

20



EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

sweepline; after the clipping (and planting the paral-
lelograms appropriately) is done, we are able to reuse
the rectilinear-case machinery and finish the BFS step
with C(C − 1) sweeps—one per pair of orientations.
Overall we obtain an O(C2n log n)-time O(Cn)-space
algorithm.

C-oriented paths in general domains We general-
ize our techniques to compute the C-oriented link
distance map also in domains with unrestricted ori-
entations of edges. We observe that the algorithm
for C-oriented path in a C-oriented domain uses C-
orientedness of the domain only to bound the com-
plexity of the final map (without the C-orientedness,
the complexity may blow up). However, the blowup
happens only “deep inside” of certain trapezoids.
Thus, we declare the deep parts of such trapezoids
as a separate cell. The path to a query point q in-
side the cell consists of 2 parts: path from s to enter
the trapezoid, and a “zigzag” of extreme orientations
to q. The number of links in the first part is given
by the usual map, the number of links in the second
part can be determined in constant time (assuming
constant-time floor function) because of the regular
pattern of the path—it bounces off the sides of the
trapezoid until reaching the query point.

Unrestricted paths Our focus on C-oriented path is
partially justified by observing that the general min-
link path problem is 3SUM-hard—even in C-oriented
domains.

2.1 Approximations

2-approximate C-oriented paths The C-oriented
link distance may be approximated by requiring that
every second link of the path is horizontal. To find
a minlink C-oriented path with this requirement one
can do the BFS in the trapezoids intersection graph
with one modification: instead of checking for inter-
section between trapezoids for all pairs of orienta-
tions, only check for intersections between the hori-
zontal trapezoids and the other ones. Such a modi-
fication decreases the running time of our algorithm
to O(Cn log n), but the space remains O(Cn) because
the C trapezoidations of P are still constructed.

To reduce the space to O(n) we only do the hori-
zontal trapezoidation, and go back to the rectilinear-
case ideas of Das and Narasimhan [6] who label the
horizontal trapezoids without using the vertical ones
(in our case, we label the horizontal trapezoids with-
out using any other ones). In particular, without
the other trapezoidations we cannot use our planting
(there is simply nothing to plant!) to initialize the
sweep; thus we do both the UpSweep and the Down-
Sweep à la [6] starting from trapezoids labeled on the
previous step.

Approximating robust paths with C-oriented paths
We define robust paths as those whose edges may
be “wiggled” without intersecting the obstacles. We
prove that C-oriented paths can approximate a ro-
bust minlink path to within a one-sided additive error
of 1: we show how to build a data structure to an-
swer efficiently the approximate robust link distance
queries; to output the approximating C-oriented path
itself takes additional time proportional to the link
distance. We emphasize that we compute the data
structure for approximate link distance queries in sub-
quadratic time, which compares favorably with the
Θ(n4) worst-case complexity of the exact map [22].

O(
√
h)-approximation for unrestricted paths We

show that in O(n
√
h + n log n + h3/2 log h) time one

can find an O(
√
h)-approximate minlink path with

arbitrary orientations; this is the first subquadratic-
time approximation algorithm with a non-trivial ap-
proximation guarantee for the general case. In fact,
our algorithm builds a linear-size O(

√
h)-approximate

link distance map (which again compares well to the
Θ(n4)-size exact map).

The two ingredients of our approximation are
low-stabbing-number bridges and staged illumination
(window partition) in simple polygons. We bridge
the holes to the outer boundary of P , thereby obtain-
ing a simple polygon. We do not make the bridges
fully opaque; rather, they are “semi-transparent”: we
triangulate the simple polygon and do the staged il-
lumination from s, but as we go, each time a bridge
is illuminated on one of its sides, at the next step we
consider it to be illuminated also on its other side,
and continue the staged illumination. In comparison
to opt, we are delayed by 1 link every time an edge of
opt crosses a bridge; i.e., on every edge of opt we have
as many additional vertices as there are bridges that
the edge crosses. Using a low-stabbing-number tree
for the bridging [4], we ensure that each edge of opt
crosses O(

√
h) bridges, and thus we obtain an O(

√
h)

multiplicative approximation.
As described above, the illumination takes O(nh)

time, since a triangle can be discovered by light em-
anating from h bridges. To address this inefficiency,
we declare a triangle opaque as soon as it is lit m ≤ h
times. We prove that with the right choice of m this
does not delay the illumination by too much, while
decreasing the runtime of the illumination to O(nm).

References

[1] J. Adegeest, M. H. Overmars, and J. Snoeyink.
Minimum-link c-oriented paths: Single-source
queries. Int. J. Comput. Geometry Appl.,
4(1):39–51, 1994.

[2] E. M. Arkin, J. S. B. Mitchell, and V. Polishchuk.

21



27th European Workshop on Computational Geometry, 2011

Maximum thick paths in static and dynamic en-
vironments. Computational Geometry Theory
and Applications, 43(3):279–294, 2010.

[3] J. Barraquand and J.-C. Latombe. Nonholo-
nomic multi-body mobile robots: controllability
and motion planning in the presence of obstacles.
Algorithmica, 10:121–155, 1993.

[4] B. Chazelle, H. Edelsbrunner, M. Grigni,
L. J. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using
geodesic triangulations. Algorithmica, 12(1):54–
68, 1994.

[5] L. P. Chew. Planning the shortest path for a
disc in O(n2 log n) time. In Proceedings of the 1st
Annual Symposium on Computational Geometry,
pages 214–220, 1985.

[6] G. Das and G. Narasimhan. Geometric searching
and link distance. Algorithms and Data Struc-
tures, pages 261–272, 1991.

[7] S. K. Ghosh. Computing the visibility polygon
from a convex set and related problems. J. Algo-
rithms, 12(1):75–95, 1991.

[8] J. E. Goodman and J. O’Rourke. Handbook of
discrete and computational geometry. CRC Press
series on discrete mathematics and its applica-
tions. Chapman & Hall/CRC, 2004.

[9] J. Hershberger and J. Snoeyink. Computing min-
imum length paths of a given homotopy class.
Comput. Geom., 4:63–97, 1994.

[10] H. Imai and T. Asano. Efficient algorithms for
geometric graph search problems. SIAM J. Com-
put., 15(2):478–494, 1986.

[11] H. Imai and T. Asano. Dynamic orthogonal seg-
ment intersection search. J. Algorithms, 8(1):1–
18, 1987.

[12] P. Jacobs and J. Canny. Planning smooth paths
for mobile robots. In Z. Li and J. F. Canny,
editors, Nonholonomic Motion Planning, pages
271–342. Kluwer Academic Pubishers, Norwell,
MA, 1992.

[13] I. Kostitsyna and V. Polishchuk. Simple wrig-
gling is hard unless you are a fat hippo. In Fifth
International Conference on Fun with Algorithms
(FUN), 2010.

[14] D. T. Lee, C. D. Yang, and C. K. Wong. Recti-
linear paths among rectilinear obstacles. Discrete
Appl. Math., 70:185–215, 1996.

[15] A. Maheshwari, J.-R. Sack, and D. Djidjev. Link
distance problems. In J.-R. Sack and J. Urru-
tia, editors, Handbook of Computational Geome-
try, Chapter 12, pages 519–558. Elsevier Science,
Amsterdam, 2000.

[16] J. Mitchell, G. Rote, and G. Woeginger.
Minimum-link paths among obstacles in the
plane. Algorithmica, 8(1):431–459, 1992.

[17] J. S. B. Mitchell and V. Polishchuk. Thick non-
crossing paths and minimum-cost flows in polyg-
onal domains. In J. Erickson, editor, Symposium
on Computational Geometry, pages 56–65. ACM,
2007.

[18] C. Ó’Dúnlaing and C.-K. Yap. A ”retraction”
method for planning the motion of a disc. J.
Algorithms, 6(1):104–111, 1985.

[19] T. Ohtsuki. Gridless routers - new wire routing
algorithm based on computational geometry. In
Internat. Conf. on Circuits and Systems, China,
1985.

[20] M. Sato, J. Sakanaka, and T. Ohtsuki. A fast
line-search method based on a tile plane. In Proc.
IEE ISCAS, pages 588–591, 1987.

[21] S. Suri. A linear time algorithm with minimum
link paths inside a simple polygon. Comput. Vi-
sion Graph. Image Process., 35(1):99–110, 1986.

[22] S. Suri and J. O’Rourke. Worst-case optimal al-
gorithms for constructing visibility polygons with
holes. In Proceedings of the second annual sym-
posium on Computational geometry, SCG ’86,
pages 14–23, New York, NY, USA, 1986. ACM.

[23] H. Wang and P. K. Agarwal. Approximation
algorithms for curvature constrained shortest
paths. In Proc. 7th ACM-SIAM Sympos. Dis-
crete Algorithms, pages 409–418, 1996.

[24] R. Wein, J. P. van den Berg, and D. Halperin.
The visibility-voronoi complex and its applica-
tions. Comput. Geom., 36(1):66–87, 2007.

[25] R. Wein, J. P. van den Berg, and D. Halperin.
Planning high-quality paths and corridors amidst
obstacles. I. J. Robotic Res., 27(11-12):1213–
1231, 2008.

[26] C. D. Yang, D. T. Lee, and C. K. Wong. On
bends and lengths of rectilinear paths: a graph
theoretic approach. Internat. J. Comput. Geom.
Appl., 2(1):61–74, 1992.

[27] C. D. Yang, D. T. Lee, and C. K. Wong. Recti-
linear paths problems among rectilinear obstacles
revisited. SIAM J. Comput., 24:457–472, 1995.

22




