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Abstract

In this paper we introduce a new model for handling
imprecision in the input data of a geometric problem.
The proposed model, which is called λ-geometry, is a
generalization of region based models to handle dy-
namic imprecision. Further, we study the problem
of finding the largest area axis-aligned bounding box
of a set of n imprecise points under the model. We
propose an O

(
n(log n+ log k+m)

)
time algorithm to

solve this problem, where k is the maximum complex-
ity of the regions representing imprecise points, and
m is the maximum number of corner defining func-
tions when the largest axis-aligned bounding box is
defined by points on its corners.

1 Introduction

Classical computational geometry focuses mainly on
problems whose input data has precise location. Al-
though these problems have their own interest, they
are not very close to what we face in the real world. In
the real world, input data is collected by using devices
with limited precision. Therefore, imprecision in the
location of input data is inevitable. In order to take
imprecision into account, several models have been
proposed. Region based models are the most com-
mon types [5]. Once a model can represent imprecise
points, it can be generalized to represent imprecise
lines and polygons as well. So, the initial matter is
how to model an imprecise point. In a region based
model, location of each imprecise point is assumed
to be anywhere in a predefined region. The model of
ε-geometry [3] is of the earliest models of this type. In
this model each point can have an imprecision up to ε
in any direction, and as a result regions are assumed
to be disks. Other regions such as segments, rectan-
gles, and convex polygons have also been proposed to
represent imprecision. Further, several computational
geometry problems have been studied under region
based models, such as finding the largest/smallest
area axis-aligned bounding box [6], and convex hull
[5]. A thorough study is presented in [5].
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Besides solving computational geometry problems
under a specific model of imprecision, developing more
general and practical models for imprecision is of great
importance. Proposing a practical model that deals
with dependencies among imprecise input data is of
the recent work done in this field [4].

As reviewed above, region based models have a
static view on the level of imprecision. That is once
the regions that represent imprecision are known; they
stay unchanged throughout the algorithm. However,
level of imprecision can vary continuously according to
circumstances such as changes in the precision of mea-
surement. So, in this paper we introduce a new model
that can handle dynamic level of imprecision. Let λ
represent the level of imprecision, where λ ∈ [0, 1].
Our proposed model which is called λ-geometry is a
generalization of region based models that allows re-
gions to be growing or shrinking according to increase
or decrease in λ in a monotone continuous manner.
This model also provides an inherent dependency in
the level of imprecision of the input data.

The paper is organized as follows. In Section 2, we
define λ-geometry more precisely. Later, in section
3 we show how the problem of finding the maximum
area axis-aligned bounding box of a set of imprecise
points can be solved under the model of λ-geometry.

2 The model of λ-Geometry

We begin introducing the model of λ-geometry by
defining an imprecise point in it. An imprecise point
p in this model is defined as p =

(
p,M, λ

)
, where

p is the exact value of the imprecise point p, M =
[v1, v2, ..., vk]2×k is the imprecision matrix in which
each vector vi defines the maximum imprecision in its
direction, and the parameter λ shows the imprecision
level for each vi. So, for any λ ∈ [0, 1], a region is
considered for modeling an imprecise point. This re-
gion, which includes all possible instances of a point
p, is the convex hull of points defined by the sum of
the vectors λvi and p. Fig.1(a) illustrates a sample
imprecise point p for two different λs, λ1 = 2/3 and

λ2 = 1, where p =
[

4
1

]
and M =

[
2 −2 −3
0 3 −2

]
.

It is obvious that for λ = 1 an imprecise point p is
the convex hull of the points inducing by the vectors of
imprecision matrix M , while for λ = 0 this imprecise
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Figure 1: (a) An imprecise point p for λ1 = 2/3 and λ2 = 1. (b)
The AABB constructed with extreme imprecise points in each of
the four axis-aligned directions. For λ = 1, p1 is the rightmost,
while for λ = 0.5, p3 is the rightmost imprecise point.

point is just the exact point p 1.
Now, we focus on algebraic definition of an instance

of an imprecise point, p(λ, γ):

p(λ, γ)
def
= p+ λ.Mγ ; γ = [γ1, γ2, · · · , γk]

T
,

, 0 ≤ γi ≤ 1,
∑k

i=1
γi ≤ 1.

In this definition γ is an arbitrary vector that de-
fines an instance p(λ, γ) to be anywhere in the convex
hull mentioned earlier. So, an imprecise point, p(λ),
is a region defined by

p(λ)
def
=
{
p(λ, γ) | ∀γ ; 0 ≤ γi ≤ 1,

∑k

i=1
γi ≤ 1

}
.

In many models of imprecise data, a line defined by
two imprecise points is the union of lines that passes
through the both corresponding regions [5]. Similarly,
a line in the model of λ-geometry is defined as follows:

Lp,q(λ)
def
=
{
L(p′, q′) | p′, q′ are instances of p(λ), q(λ)

}
.

This definition can be generalized for defining im-
precise polygons.

3 Largest Axis-Aligned Bounding Box

Given a set P of n points in the plane, the axis-
aligned bounding box (AABB) of P is the smallest
axis-aligned rectangle that contains P . The key step
to find the AABB of P is to find the extreme point
of P in each of the four axis-aligned directions. In an
imprecise context when imprecise points are modeled
by regions, choosing an instance from each imprecise
point results in an AABB. So in this case, the problem
is where to choose an instance from each imprecise
point to make the area of AABB of these instances
maximized for example, (the largest AABB problem).
From now on we use AABB to refer to the largest
AABB.

In the model of λ-geometry, since regions are grow-
ing (or shrinking) with the rate of λ, it is possible
for each region to be extreme in an axis-aligned di-
rection for a specific λ ∈ [0, 1], see Fig.1(b). So,

1Note that since we define p by the concept of convex hull,
it is possible for a vector to be ineffective. But without loss of
generality, we assume that all vectors are effective.

to find the AABB in the model of λ-geometry, the
first step is to break the interval of [0, 1] in some
subintervals for which the four extreme regions stay
unchanged. Thus, the output will be as follows:
(λi−1, λi, fRi, fLi, fTi, fBi), such that 1 ≤ i ≤ n′,
λi ∈ [0, 1], λi < λi+1, and fRi, fLi, fTi and fBi are
functions defining respectively the right, left, top and
bottom side of the AABB in the interval of [λi−1, λi].
Next we explain how to find these values.

Consider the imprecise point pi(λ) = (pi,Mi, λ),
where pi = (xi, yi). The rightmost point of pi(λ) is
defined by the vector of viR = (aiR, biR) which is the
rightmost vector of Mi. Thus, the rightmost point of
pi(λ) can be defined by a linear function Ri(λ) = xi+
λaiR. We call Ri(λ) the rightmost defining function
of pi(λ). Since pi(λ) is a convex polygon, aiR can be
found in O(log ki) time, where ki = |Mi| and |Mi|
denotes the number of columns in the matrix Mi.

Given a set of imprecise points, let R =
{R1, R2, · · · , Rn} be the set of all rightmost defining
functions. So, the right side of the AABB can be de-
termined by the upper envelope of R. Functions of
R are totally defined in [0, 1], and each pair of these
functions intersects in at most one point. Thus, the
upper envelope of R has at most n breakpoints, and
it can be computed in O(n log n) time [7]. The upper
envelopes of the left, top, and bottommost defining
functions can be computed similarly. So after com-
puting these four upper envelopes, the union of their
breakpoints constructs the critical λs of this step.
Let k = max

1≤i≤n
ki. Then the algorithm proposed to

find these critical λs runs in O(n log k+n log n) time.
When k is polynomial in n, we prove this algorithm
is optimal.

Lemma 1 Given a set of n imprecise points in the
model of λ-geometry, finding all the rightmost defin-
ing functions for the largest AABB problem requires
Ω(n log n) computations in the worst case.

Proof. The proof is by a reduction from the sorting
problem. Let S = {s1, s2, · · · , sn} be a set of n posi-
tive real numbers, and let d be a number greater than
the biggest difference of numbers in S. We convert
each number si to an imprecise point pi = (pi,Mi, λ)
with a symmetric rhomboid as its region. We define
the rightmost vector of pi to be Ri = miλ − misi,
where mi = si/(d− si). Based on the formula of
the rightmost defining function, Ri can be seen as

the vector of ViR =
[
mi

0

]
which starts at the point

pi = (−misi, 0). Similarly, we define the left, top and
bottom vectors and finally we obtain the imprecision

matrix M =
[
mi 0 −mi 0
0 mi 0 −mi

]
. We claim that

the order in which the rightmost defining functions of
the constructed imprecise points appear on the upper
envelope is the same as the order of sorted numbers.
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To prove this it is sufficient to show that for any three
positive numbers si, sj , sk, where si < sj < sk, Ri(λ)
appears before Rj(λ) on the upper envelope, and if
xij (resp. xik ) is the intersection point of Ri(λ) and
Rj(λ)

(
resp. Ri(λ) and Rk(λ)

)
, then xij < xik. This

is a straightforward result. �

In finding critical λs and the corresponding right,
left, top and bottommost defining functions there is
still one issue left to handle, and that is we can not
choose more than one instance from each imprecise
point. For a fixed value of λ, Fig.1(b) illustrates a
situation where the right and the bottom side of the
AABB is defined by two different instances of an im-
precise point p1(λ). To handle this situation either
we should take just the rightmost or just the bottom-
most instance of p1(λ), or we should take an instance
of p1(λ) that plays these roles together that is the in-
stance taken should be the lower-right corner of the
AABB. The final choice is the one that leads to a
larger area of AABB. Next we explain how to handle
this issue in the model of λ-geometry.

For a fixed value of λ, the AABB of a set of n im-
precise points modeled by regions can be determined
by testing only the four farthest imprecise points in
each of the four axis-aligned directions [6]. Further,
let F = {f1, f2, · · · , fn} be an arrangement of n lines
in the plane and let c be a constant. It is known that
the cth-upper level of F , denoted by EcF , has O(n)
breakpoints and it can be computed in O(n log n)
time [2]. So, in the model of λ-geometry to find the
AABB determined by four instances of different im-
precise points we do the following. First we compute
the set of rightmost, the set of leftmost, the set of
topmost and the set of bottommost defining func-
tions. Let R,L, T, and B denote these sets respec-
tively. Then, for each of these sets we find cth-upper
level for c = 1, 2, 3, 4. Let EcR, E

c
L, E

c
T and EcB denote

these upper levels for the sets R,L, T, and B respec-
tively. Now, we define the set of critical λs as:

Λ =
{
λ|λ is a break point for EcR or EcL or EcT or EcB

for c = 1, 2, 3, 4
}

Any two consecutive members of the ordered set Λ
construct an interval in which none of the four up-
per levels changes. So, in each interval constructed if
the first upper level of each set is different from the
first upper levels of the other sets, we report this in-
terval and its corresponding upper levels (in this case
we are sure that four different imprecise points have
constructed the AABB). Otherwise, if the first upper
levels of some sets are equal, we take the first upper
level of a set and test the second, the third, and fi-
nally in the worst case the forth upper levels of the
remaining sets, and we select the one that leads to a
larger area of AABB. So, by the approach explained
we can find the AABB that is determined by four in-
stances of different imprecise points. Further, when

one or two instances play the role of corners of the
AABB, three or two instances of different imprecise
points can also determine the AABB. So, we should
compute the AABB of these situations as well, and
at the end report the largest AABB we have found
over all situations. The case of three instances oc-
curs when one corner of the AABB is constructed by
two equal upper levels (for example when E1

L 6= E1
T

and E1
R = E1

B). Further, the case of two instances
occurs when two opposite corners of the AABB are
constructed by equal upper levels (for example when
E1
L = E1

T and E1
R = E1

B). So, the final step of the
algorithm is how to find the AABB of these two cases.
Next we show how to handle this.

Let p(λ) be an imprecise point whose instance is a
corner of the AABB. Obviously this instance should
be taken from the boundary of p(λ). Thus, the bound-
ary of p(λ), and more precisely, a specific part of this
boundary called a chain is important to us. Assume
that vertices of the boundaries of the imprecise points
are in a clockwise order. We call a chain convex (resp.
concave) if it is xy-monotone and it lies above (resp.
below) any line that passes through its segments.

Lemma 2 Let Cp = {p1, p2, · · · , pk} be a concave
chain in the second quadrant of the coordinate system,
while Cq = {q1, q2, · · · , qk} is a convex chain in the
forth quadrant. Then the AABB whose corners lie on
Cp and Cq can be computed in O(log k) time.

Proof. It is known that the largest inscribed isothetic
rectangle inside a k-sided polygon can be computed
by an O(log k) time algorithm [1]. We can treat the
two chains’ problem as a special case of this algorithm.
Thus, the AABB whose corners lie on Cp and Cq can
be computed in O(log k) time as well. �

Lemma 3 Let Cor(λ) = (λa + a′, λb + b′) repre-
sent the upper-left corner of the AABB and let q =
(q,Mq, λ) be the rightmost and bottommost impre-
cise point. Then, the AABB can be computed in
O(log k+m) time, where k = |Mq| and m is the num-
ber of functions defining the lower-right corner of the
AABB, while λ decreases from 1 to 0.

The proof is omitted due to space limitations. Since
lemma 3 is a special case of lemma 4, we refer readers
to see the proof of lemma 4.

So far we have shown how to find the AABB con-
structed by four instances, and the AABB constructed
by three instances of imprecise points. The following
lemma shows how to find the AABB constructed by
two instances of imprecise points.

Lemma 4 Let p = (p,Mp, λ) be the leftmost and
topmost, and let q = (q,Mq, λ) be the rightmost
and bottommost imprecise points. Then the AABB
can be computed in O(log k + m) time, where k =
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max
(
|Mp|, |Mq|

)
and m is the number of functions

defining corners, while λ decreases from 1 to 0.

Proof. It is known that in the case of two segments,
at least one corner of the AABB lies on endpoints of
these segments [1]. So, for any fixed value of λ, at least
one vector of Mp and one edge of Mq (or vice versa)
define the AABB. This is still true while points are
growing or shrinking in the model of λ-geometry. This
fact helps us to find the optimal path for each of two
corners of the AABB. To do so, it is sufficient to find
critical λs for which the vector or the segment that
defines the AABB changes. Let l′

(
a(λ), s(λ)

)
denote

the optimal path for the point a(λ) and the segment
s(λ). The parametric equation of l′

(
a(λ), s(λ)

)
can be

obtained by computing the area function and its first
derivative 2. First for λ = 1 we compute two corners
of the AABB by using lemma 2. These corners are
taken from p and q, and are denoted by cp and cq
respectively. Set λc = 1. According to the position of
these corners two cases arise:

Case1: The corner cp lies on a vertex of p(λ), while
the corner cq lies on a segment of q(λ)(or vice versa).
We denote this vertex of p(λ) by pi, and this segment
of q(λ) by sqj = qjqj+1 (see Fig.2 for 0.7 ≤ λ ≤ 1
and 0.2 ≤ λ ≤ 0.3). In this case, we take vectors
vj and vj+1 of Mq, and find their intersection with
line l′(cp, s

q
j). Note that only one of these vectors in-

tersects l′(cp, s
q
j). Then we compute the value of λ

corresponding to this intersection, and denote it by
λq. Further, we take the vector vi of Mp and find its
intersection with l′(vj , s

p
i ) and l′(vj , s

p
i+1) (just one of

these lines intersects vi). Let λp be the value of λ cor-
responding to this intersection. Set λn = max(λp, λq)
and report two functions vi and l′(cp, s

q
j) as two cor-

ners’ paths in [λn, λc]. If λn ≤ 0 the algorithm is
finished. Otherwise, set λc = λn and go to case 2.

Case2: Both corners cp and cq lie on vertices of
p(λ) and q(λ). Let pi denote the corresponding vertex
of p(λ), and let qj denote the corresponding vertex of
q(λ) (see Fig. 2 for 0.3 ≤ λ ≤ 0.7 or 0 ≤ λ ≤ 0.2). In
this case, we take vector vj of Mq, and find its inter-
section with l′(vi, s

q
j) and l′(vi, s

q
j+1). Let λq denote

the value of λ corresponding to this intersection. Fur-
ther, we take vector vi of Mp, and compute its inter-
section with l′(vj , s

p
i ) and l′(vj , s

p
i+1). Let λp denote

the value of corresponding λ. Set λn = max(λp, λq)
and report two functions vi and vi as two corners’
paths in [λn, λc]. If λn ≤ 0 the algorithm is finished.
Otherwise, set λc = λn and go to case 1.

In each iteration, the algorithm reports an interval
and two functions defining the optimal paths of the
upper left and lower right corners within this interval.
Letm denote the total number of corner defining func-
tions in [0, 1]. Then the algorithm iterates m times.

2Note that while λ decreses from 1 to 0, a(λ) is a segment
while s(λ) is a triangle.

Figure 2: Concepts used in finding corner defining functions. Short
dashes show the optimal paths for the corners.

Finding the first optimal corners (for λ = 1) takes
O(log k) time by using lemma 2, but since we have
these corners in the following iterations, each of the
following iterations takes constant time. Therefore,
the total time complexity is O(log k +m). Note that
m = O(k). �

Thus, in the model of λ-geometry we have obtained
the following results:

Theorem 5 Given a set of n imprecise points under
the model of λ-geometry, the largest AABB problem
can be solved in O

(
n(log n+ log k +m)

)
time, where

k is the maximum complexity of regions representing
imprecision, and m is the maximum number of corner
defining functions.

Note that when k = O(log n), the largest AABB prob-
lem under the model of λ-geometry can be solved in
the optimal time Θ(n log n).
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