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Probabilistic matching of solids in arbitrary dimension

Daria Schymura∗

Abstract

We give simple probabilistic algorithms that approx-
imately maximize the volume of overlap of two solid
shapes under translations and rigid motions. The
shapes are subsets of Rd, d ≥ 2. The algorithms
approximate w.r.t. an prespecified additive error and
succeed with high probability. Apart from measura-
bility assumptions, we only require from the shapes
that uniformly distributed random points can be gen-
erated. An important example are finite unions of
simplices that have pairwise disjoint interiors.

1 Introduction

We design and analyze simple probabilistic algorithms
for matching solid shapes in Rd under translations and
rigid motions. An important example of solid shapes
are finite unions of simplices that have pairwise dis-
joint interiors. On the input of two shapes A and B,
the algorithms compute a transformation t∗ such that
the volume of overlap of t∗(A) and B is approximately
maximal.

First, we explain the algorithm and its analysis for
the case of translations. In Section 4, we show how to
generalize the results to rigid motions.

For translations, the idea of the algorithm is as fol-
lows. Given two shapes A and B, a point a ∈ A
and a point b ∈ B are picked uniformly at random.
This tells us that the translation t that is given by the
vector b − a maps some part of A onto some part of
B. We record this as a “vote” for t and repeat this
procedure very often. Then we determine the dens-
est cluster of the resulting point cloud of translation
vectors, and output the center of this cluster. This
translation maps a large part of A onto B. The de-
tails of the algorithm are explained in Section 2.

We show that this algorithm approximates the max-
imal volume of overlap under translations. More pre-
cisely, let topt be a translation that maximizes the
volume of overlap of A and B, and let t∗ be a transla-
tion that is computed by the algorithm. Given an er-
ror bound ε and an allowable probability of failure p,
both between 0 and 1, we show bounds on the re-
quired number of random experiments, guaranteeing
that the difference between approximation and opti-
mum |topt(A)∩B|−|t∗(A)∩B| ≤ ε|A| with probability
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at least 1− p. Here | · | denotes the volume (Lebesgue
measure) of a set. We use ε|A| and not just ε as er-
ror bound because the inequality should be invariant
under scaling of both shapes with the same factor.

In a previous publication [1] we considered the 2-
dimensional case. Here we not only generalize the re-
sults to higher dimensions, but we also give new proofs
that improve the bounds on the number of random
samples.

Furthermore we considerably improve the time
complexity of the algorithm by showing that a simpler
definition of a cluster suffices to guarantee approxi-
mation. In [1], a translation whose neighborhood con-
tained the maximal number of “votes” was computed,
which boiled down to computing a deepest cell of an
arrangement of boxes. For N boxes, the best known
time bound is O(Nd/2/(logN)d/2−1 polyloglogN) [2].
Here we show that it is sufficient to output the “vote”
whose neighborhood contains the maximal number of
“votes”, which can be computed by brute force in
time O(N2) in any dimension. The time bound can
be further improved to O(N(logN)d−1) by using or-
thogonal range counting queries [4].

Cheong et al. [3] introduce a general probabilis-
tic framework, which they use for approximating the
maximal area of overlap of two unions of n and m tri-
angles in the plane, with prespecified absolute error ε,
in time O(m+(n2/ε4)(log n)2) for translations and in
time O(m + (n3/ε8)(log n)5) for rigid motions. The
latter time bound is smaller in their paper, due to
a calculation error in the final derivation of the time
bound, as was noted in [11]. Their algorithm works
with high probability.

For two simple polygons with n and m vertices in
the plane, Mount et al. [8] show that a translation
that maximizes the area of overlap can be computed
in time O(n2m2).

For maximizing the volume of overlap of two unions
of simplices under rigid motions, no exact algorithm
that runs in polynomial time is known, not even in
the plane. Vigneron gives an FPTAS with relative
error ε for dimension d ≥ 2 [11]. For two polyhedra
P and Q in Rd, given as the union of m and n sim-
plices, respectively, the algorithm for approximating
the maximal volume of overlap has time complexity
O
(
(nmε )d

2/2+d/2+1(log nm
ε )d

2/2+d/2+1
)
, which can be

improved to O
(
(n6/ε3) log4(n/ε)β(n/ε)

)
in the plane

where β is a very slowly growing function related to
the inverse Ackermann function.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
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2 A probabilistic algorithm for matching under
translations

Before stating the main result for translations, we
introduce some definitions. The boundary ∂A of a
set A ⊆ Rd is the set of points that are contained
in its closure, but not in its interior. We measure
the boundary of d-dimensional sets by the (d − 1)-
dimensional Hausdorff measure, and denote it slightly
sloppy by |∂A|. For a definition of the Hausdorff mea-
sure and related definitions, we refer the reader to [7].
The isoperimetric quotient of A ⊂ Rd is defined to be
|∂A|d/|A|d−1. The isoperimetric quotient can be consid-
ered as a certain measure of the fatness of a figure A.

We always assume shapes to be Lebesgue measur-
able subsets of Rd that have positive, finite volume
and whose boundary is measurable by the (d − 1)-
dimensional Hausdorff measure and has positive, fi-
nite (d− 1)-dimensional volume.

Our algorithm can be applied to all shapes from
which we can generate random sample points. For
unions of simplices, the runtime of our method de-
pends only linearly on the number of vertices, but it
depends more significantly on fatness parameters as
the isoperimetric quotient of one of the shapes and,
in the case of rigid motions, on the ratio diam(A)d

/|A|.

Theorem 1 (Runtime for translations) Let A
and B be shapes in constant dimension d, and let
ε, p ∈ (0, 1) be parameters. Assume that we are
given a lower bound on |A| and an upper bound
on |B|, which differ only by a constant, and an
upper bound KA on the isoperimetric quotient of A.
Assume further that N uniformly distributed random
points can be generated from a shape in time T (N).

Then a translation that maximizes the volume
of overlap of A and B up to an additive error
of ε|A| with probability ≥ 1 − p can be com-
puted in time O

(
T (N) + N(logN)d−1

)
where N =

O
(
ε−(2d+2)K2

A log 2
p

)
.

If A and B are finite unions of at most n simplices
that have pairwise disjoint interiors, then T (N) =
O(n+N log n).

To prove this theorem, we describe an algorithm, Al-
gorithm 1, and then prove that it is correct and has
the runtime claimed in the theorem.

The following theorem gives bounds on the output
of ClusteringSize(ε,A) and SampleSize(B, ε, δ, p) in
Algorithm 1 that guarantee that the output of Al-
gorithm 1 approximates the maximal volume of over-
lap of A and B up to an additive error of ε|A| with
probability at least 1− p.

Of course, the roles of A and B can be swapped,
which may result in better bounds. For the short-
ness of presentation, we do not reflect this fact in the
following.

Algorithm 1: ProbMatchT
Input: shapes A,B ⊂ Rd, error bound ε ∈ (0, 1),

allowed probability of failure p ∈ (0, 1)
real δ ← ClusteringSize(ε,A);
integer N ← SampleSize(B, ε, δ, p);
collection Q← ∅;
for i = 1 . . . N do

point a← randomPoint(A);
point b← randomPoint(B);
add(Q, b− a);

end
return FindDensestClusterT(Q, δ);

Function FindDensestClusterT(Q, δ)

Input: collection Q of points in Rd, positive
number δ

Output: point t in Q such that the cube of side
length 2δ that is centered at t contains
a maximal number of points from Q

Theorem 2 (Correctness of Algorithm 1)
Let A and B be shapes in constant dimen-
sion d, and let ε, p ∈ (0, 1) be parameters. If
ClusteringSize(ε,A) returns a positive number

δ ≤ d
d−1 ·

√
2

3
√
d
· ε · |A||∂A| and SampleSize(B, ε, δ, p)

returns an integer N ≥ Cε−2 δ−2d |B|2 log 2
p for some

universal constant C > 0, then Algorithm 1 computes
on the input (A,B, ε, p) a translation that maximizes
the volume of overlap of A and B up to an additive
error of ε|A| with probability at least 1− p.

The universal constant C can be deduced from the
proofs. Note that, when both shapes are scaled with
the same factor, the sample size N does not change.
In other words, it is homogeneous. The clustering size
scales with the shapes. This is reasonable because
blowing up the shapes coarsens fine features.

3 Proof idea of Theorem 2

Let µ be the probability distribution on the transla-
tion space that is induced by the random experiment
in the algorithm, and let µN be the empirical measure.
Recall that µ has a density function f if the proba-
bility µ(E) of any event E ⊆ Ω can be computed as
the integral over the density function

∫
E
f(x)dx.

The main idea is to prove that the density function
of µ is proportional to the objective function, that is
the function that maps a translation vector t ∈ Rd to
the volume of the intersection of t(A) and B. Thus
the goal is to find a translation at which the density
function is approximately maximal.

Conceptually, the density function is approximated
in a two step process. Let B(t, δ) be a ball of ra-
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dius δ, centered at t, w.r.t. the metric that is induced
by the maximum norm. First, f(t)·|B(t, δ)| is close to
µ(B(t, δ)) if f is nice enough and δ is sufficiently small.
Second, the probability of a small cube µ(B(t, δ)) is
close to µN (B(t, δ)) if N is sufficiently large.

The analysis of the algorithm is based on these sim-
ple ideas whose details are not that easy. They are
hidden in the following longish theorem that follows
from theorems in Chapters 3 and 4 of [5].

Theorem 3 (Probabilistic toolbox) Let Ω ⊆ Rk
be a metric space, and let B be the set of balls of some
fixed radius δ > 0 in Ω. Let vol be a measure on Ω
such that, for all x ∈ Ω, the volume vol(B(x, δ)) = vδ
for some vδ > 0. Assume further that B has finite VC
dimension V .

Let µ be a probability measure on Ω that has a
Lipschitz continuous density function f with Lipschitz
constant L. Let X1, . . . , XN be i.i.d. random variables
taking values in Ω with common distribution µ and
empirical measure µN .

Let j ∈ {1, . . . , N} be such that µN (B(Xj , δ)) =
max1≤i≤N µN (B(Xi, δ)). Then, for all τ > 0 and for

all x ∈ Ω, with probability ≥ 1 − 2e−2Nτ2
, we have

f(Xj) ≥ f(x)− 2(c
√
V/N + τ)/vδ − 3Lδ.

In this inequality, c is a universal constant.

The key lemma to apply Theorem 3 states that the
density function of µ is proportional to the objective
function. It follows from a transformation rule for
density functions.

Lemma 4 (Key lemma) Let X be the random vec-
tor on Rd that draws translations t = b − a where
(a, b) ∈ A × B ⊂ R2d is drawn uniformly at random.

The density function of X is given by f(t) = |t(A)∩B|
|A|·|B| .

Furthermore we have to show that the density
function f is Lipschitz continuous. In the following
theorem, let Hk denote the k-dimensional Hausdorff
measure. For Lebesgue measurable sets in Rd, the
d-dimensional Hausdorff measure and the Lebesgue
measure coincide. The symmetric difference is de-
noted by 4.

Theorem 5 [9] Let A ⊂ Rd be bounded. Let t ∈ Rd
be a translation vector.

Then Hd(A4 (A+ t)) ≤ |t|Hd−1(∂A).

This implies that the density function f is Lipschitz
continuous. Applying the Cauchy-Schwarz inequality
yields ||t− s||2 ≤

√
d||t− s||∞, which is best possible.

Corollary 6 The function f on Rd that is given by

f(t) = |t(A)∩B|
|A|·|B| is Lipschitz continuous with constant

L =
√
d |∂A|

2|A|·|B| w.r.t. the metric that is induced by the
maximum norm.

With these results, the proof of Theorem 2 is an ap-
plication of Theorem 3. Note that the VC dimension
of the class of rectangles in Rd equals 2d [5].

4 Rigid motions

A rigid motion r on Rd is given by r(x) = Mx + t
where M ∈ Rd×d is a rotation matrix and t ∈ Rd
is a translation vector. A matrix M is contained in
the group of rotation matrices SO(d) ⊂ Rd×d if it is
orthogonal, meaningMT = M−1, and detM = 1. We
identify each rigid motion with the pair of its rotation
matrix and translation vector. Thus the space of rigid
motions equals SO(d)× Rd.

The algorithm for rigid motions works similarly as
the algorithm for translations. We draw a rotation
matrix M ∈ SO(d), a point a ∈ A and a point b ∈ B
uniformly at random. Then we register the unique
rigid motion that has M as rotation matrix and maps
a onto b as a “vote” in the transformation space. After
many rounds, say N , we determine the best cluster in
the space of rigid motions.

There are many different methods to compute a
random rotation matrix described in the literature;
see for example [6, 10]. To define the uniform dis-
tribution formally, a volume has to be defined. The
group SO(d) is

(
d
2

)
-dimensional. The volume | · | in

SO(d) is measured by the
(
d
2

)
-dimensional Haar mea-

sure.
For a matrix M = (mij)1≤i,j≤d, let ||M ||2 =√∑

1≤i,j≤d(mij)2 be the Frobenius norm. Denote the

Euclidean norm on Rd also by || · ||2. Define B2(M, δ)
and B2(t, δ) to be the closed balls of radius δ w.r.t. the
metrics induced by the Frobenius and the Euclidean
norm.

We define a δ-neighborhood of a rigid motion (M, t)
by B((M, t), δ) = B2(M, δ/diam(A))× B2(t, δ). The
radius of the rotational part of the neighborhood de-
pends on the diameter of A because it should not
change if A is scaled. The “rotational distance” of
shapes does not depend on their absolute size. A best
cluster is the random rigid motion whose neighbor-
hood contains the maximal number of other random
rigid motions. We give a pseudocode description of
the algorithm for rigid motions, Algorithm 2.

Theorem 7 (Correctness of Algorithm 2) Let
A and B be shapes in constant dimension d, and
let ε, p ∈ (0, 1) be parameters.

There are constants C,C ′ > 0 such that, if

ClusteringSize(ε,A) returns a positive δ ≤ Cε |A||∂A|
and SampleSize(B, ε, δ, p) returns an integer N ≥
C ′ε−2 δ−d

2−d diam(A)−d
2+d |B|2 log 2

p , then Algo-

rithm 2 computes on the input (A,B, ε, p) a rigid mo-
tion that maximizes the volume of overlap of A and B
up to an additive error of ε|A| with probability≥ 1−p.
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Algorithm 2: ProbMatchRM
Input: shapes A,B ⊂ Rd, error bound ε ∈ (0, 1),

allowed probability of failure p ∈ (0, 1)
real δ ← ClusteringSize(ε,A);
integer N ← SampleSize(B, ε, δ, p);
collection Q← ∅;
for i = 1 . . . N do

rotation matrix M ← randomRotation();
point a← randomPoint(A);
point b← randomPoint(B);
add(Q, (M, b−Ma));

end
return FindDensestClusterRM(Q, δ,diam(A));

Function FindDensestClusterRM(Q, δ,∆)

Input: collection Q of points in Rd×d × Rd,
positive numbers δ and ∆

Output: point (M, t) in Q such that the
neighborhood B2(M, δ/∆)×B2(t, δ) of
(M, t) contains a maximal number of
points from Q

Theorem 8 (Runtime for rigid motions) Let A,
B, ε, and p be given under the same assumptions
as in Theorem 1. Additionally, let DA be given

such that diam(A)d

|A| ≤ DA. Then a rigid motion that

maximizes the volume of overlap of A and B up to
an additive error of ε|A| with probability ≥ 1 − p
can be computed in time O

(
T (N) + N2

)
where

N = O
(
ε−(d2+d+2)Kd+1

A Dd−1
A log 2

p

)
.

As in the case of translations, the density function
on the transformation space is proportional to the ob-
jective function, and it is Lipschitz continuous:

Lemma 9 Let Z be the random vector that draws
rigid motions (M, b − Ma) ∈ SO(d) × Rd where
(M,a, b) ∈ SO(d)×A×B is drawn u.a.r. The density

function of Z is given by g(r) = |r(A)∩B|
|SO(d)|·|A|·|B| .

The function g is Lipschitz continuous with con-

stant L = |∂A|
|SO(d)|·|A|·|B| w.r.t. the metric d(r, s) =

max{diam(A) · ||M − N ||2 , ||p − q||2 } for rigid mo-
tions r = (M,p) and s = (N, q).

Observe that a δ-neighborhood of a rigid motion, as
defined above, equals the closed ball of radius δ w.r.t.
the metric d. In order to apply Theorem 3, one has to
prove that all neighborhoods have the same volume,
which follows from the fact that the

(
d
2

)
-dimensional

Hausdorff measure is a Haar measure on SO(d). Ad-
ditionally, one has to compute a lower bound on the
volume of such a neighborhood.

The Lipschitz continuity of g can be deduced us-
ing Theorems 5, 10 and the fact that the volume of

the symmetric difference fulfills the triangle inequal-
ity. We assume that A and B have (Hd−1, d − 1)-
rectifiable boundaries.

Theorem 10 [9] Let A ⊂ Rd be bounded. Let
M ∈ Rd×d be a rotation matrix and let w =
maxa∈∂A ||a−Ma||2.

Then Hd(A4MA) ≤ (2d/d+1)
d−1
2 · w · Hd−1(∂A).

The constant (2d/d+1)
d−1
2 can be replaced by 1 for

sets that have an (Hd−1, d− 1)-rectifiable boundary.

In the 2-dimensional case, the results can be signifi-
cantly improved by representing a rigid motion by the
pair of its rotation angle (instead of the rotation ma-
trix) and the translation vector, as it was done in [1].
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