EuroCG 2011, Morschach, Switzerland, March 28-30, 2011

Convex Hull of Imprecise Points in o(nlogn) Time after Preprocessing

Esther Ezra*

Abstract

Motivated by the desire to cope with data impreci-
sion [8], we study methods for preprocessing a set
of planar regions such that whenever we are given a
set of points, each of which lies on a distinct region,
we can compute a specified structure on these points
more efficiently than in “standard settings” (that is,
without preprocessing).

In particular, we study the following problem.
Given a set L of n lines in the plane, we wish to pre-
process L such that later, upon receiving a set P of
n points, each of which lies on a distinct line of L,
we can construct the convex hull of P efficiently. We
show that in quadratic time and space it is possible
to construct a data structure on L that enables us to
compute the convex hull of any such point set P in
O(na(n)log™ n) expected time. The analysis applies
almost verbatim when L is a set of line-segments, and
yields the same asymptotic bounds.

1 Introduction

Most studies in computational geometry rely on an
unspoken assumption: whenever we are given a set
of input points, their precise locations are available
to us. Nowadays, however, the input is often ob-
tained via sensors from the real world, and hence it
comes with an inherent imprecision. Accordingly, an
increasing effort is being devoted to achieving a better
understanding of data imprecision and to developing
tools to cope with it (see, e.g., [8] and the references
therein). The notion of imprecise data can be formal-
ized in numerous ways [8]. We consider a particular
setting that has recently attracted considerable at-
tention (see [2] and the references therein). We are
given a set of planar regions, each of which repre-
sents an estimate about an input point, and the exact
coordinates of the points arrive some time later and
need to be processed quickly. This situation could oc-
cur, e.g., during a two-phase measuring process: first
the sensors quickly obtain a rough estimate of the
data, and then they invest considerably more time to
find the precise locations. This raises the necessity
to preprocess the preliminary (imprecise) locations of

*Courant Institute of Mathematical Sciences, New York
University, New York, NY 10012, USA; esther@cims.nyu.edu.

TInstitut fiir Informatik, Freie Universitit Berlin, 14195
Berlin, Germany; mulzer@inf.fu-berlin.de.

Wolfgang Mulzer!

the points, and store them in an appropriate data
structure, so that when the exact measurements of
the points arrive we can efficiently compute a pre-
specified structure on them. In settings of this kind,
we assume that for each input point its corresponding
region is known (note that by this assumption we also
avoid a point-location overhead). In light of the ap-
plications, this is a reasonable assumption, and it can
be implemented by, e.g., encoding this information in
the ordering of P.
Data imprecision. Previous work has mainly fo-
cused on computing a triangulation for the input
points. Held and Mitchell [5] were the first to consider
this framework, and they obtained optimal bounds
for preprocessing disjoint unit disks for point set tri-
angulations, a result that was later generalized by
van Kreveld et al. [7] to arbitrary disjoint polygo-
nal regions. For Delaunay triangulations, Loffler and
Snoeyink [10] obtained an optimal result for disjoint
unit disks (see also [4, 9]), which was later simplified
and generalized by Buchin et al. [2] to fat! and pos-
sibly intersecting regions. The preprocessing phase
typically takes O(nlogn) time and results in a linear
size data structure; the time for finding the structure
on the exact point set is usually linear or depends on
the complexity (and the fatness) of the input regions.
Since the convex hull can be easily extracted from
the Delaunay triangulation in linear time, the same
bounds carry over. However, once the regions are
not necessarily fat, the techniques in [2, 10] do not
yield the aforementioned bounds anymore. In partic-
ular, if the regions consist of lines or line-segments,
one cannot hope (under certain computational mod-
els) to construct the Delaunay triangulation of P in
time o(n logn), regardless of preprocessing (see [10]).
Nevertheless, if we are less ambitious and just wish to
compute the conver hull of P, we can achieve better
performance, which is the main problem studied in
this paper.
Convex hull. Computing the convex hull of a planar
n-point set is perhaps the most fundamental problem
in computational geometry, and there are many al-
gorithms available [1]. All these algorithms require
O(nlogn) steps, which is optimal in the algebraic
computation tree model. However, there are numer-
ous ways to exploit additional information to improve

LA planar region o is said to be fat if there exist two concen-
tric disks, D C o C D’, such that the ratio between the radii of
D’ and D is bounded by some constant.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

209

27th European Workshop on Computational Geometry, 2011

this bound. For example, if the points are sorted along
any fixed direction, Graham’s scan takes only linear
time [1]. If we know that there are only h points on
the hull, the running time reduces to O(nlogh) [6].
Our work shows another setting in which additional
information can be used to circumvent the theoretic
lower bound.

Our results. We show that we can preprocess the
input lines L such that given any set P of points,
each of which lies on a distinct line of L, the con-
vex hull CH(P) can be computed in expected time
O(na(n)log® n), where a(-) is the (slowly growing)
inverse Ackermann function [12, Chapter 2.1]. Our
data structure has quadratic preprocessing time and
storage, and the convex hull algorithm is based on a
batched randomized incremental construction similar
to Seidel’s tracing technique [11]. As part of the con-
struction, we repeatedly trace the zone of (the bound-
ary of) an intermediate hull in the arrangement of the
input lines.? The fact that the complexity of the zone
is only O(na(n)) [12], and that it can be computed
in the same asymptotic time bound (after having the
arrangement at hand), is a key property of our solu-
tion. The analysis applies almost verbatim when L is
a set of line-segments, and we obtain similar asymp-
totic bounds.

2 Convex Hulls

Preliminaries The input at the preprocessing stage
is a set L of n lines in the plane. A query to the
resulting data structure consists of any point set P
such that each point lies on a distinct line in L, and
for every point we are given its corresponding line.
For simplicity, and without loss of generality, we as-
sume that both L and P are in general position (see,
e.g., [1, 12]). We denote by CH(P) the convex hull of
P, and by E(P) the edges of CH(P). We represent
the vertices of CH(P) in clockwise order, and we di-
rect each edge e € E(P) such that CH(P) lies to its
right. Given a subset Q C P, a point p € P\ @, and
an edge e € E(Q), we say that e is in conflict with p
if p lies to the left of the line supported by e. The set
of all points in P\ @ in conflict with e is called the
conflict list C, of e, and the size of C, is called the
conflict size c. of e.

2.1 The Construction

Preprocessing. We construct in O(n?) time (and
storage) the arrangement A(L) of L, and produce its

2The arrangement of a set of planar lines is the decompo-
sition of the plane into wertices, edges and faces (also called
cells), each being a maximal connected set contained in the
intersection of at most two lines and not meeting any other
line.

210

vertical decomposition, that is, we erect an upward
and a downward vertical rays through each vertex v
of A(L) until they meet some line of L (not defining
v), or else extend to co. The complezity of a face f
in A(L) is the number of edges incident to f. The
zone of a curve «y consists of all faces that intersect
v, and the complexity of the zone is the sum of their
complexities.

Queries. Given an exact point set P = {p1,...,pn}
as described above, we obtain CH(P) through a
batched randomized incremental construction as fol-
lows: Let P, C P, C C Pogrn = P be a
sequence of subsets, where P;_1 is a random sam-
ple of Py of size zp_1 := min{|n/log®* Y n|,n}, for
k=2,...,log" n. Here, log(i) n is the ith iterated log-
arithm: log” n = n and log®™ n = log(log(kfl) n).
This sequence of subsets is called a gradation. The
idea is to construct CH(P;), CH(P,), ..., CH(Piog* n)
one by one. First, we have |Pi| = O(n/logn), so it
takes O(n) time to find CH(P,), using, e.g., Graham’s
scan [1]. Then, for k = 2,...,log" n, we incrementally
construct CH(Py) by updating CH(Py_1). This ba-
sic technique was introduced by Seidel [11] and it has
later found many more applications.

To construct CH(Py) from CH(Pj_1), we use the
data structure from the preprocessing to quickly con-
struct the conflict lists of the edges in E(Py_1) with
respect to Py. In the standard Clarkson-Shor random-
ized incremental construction [3] it takes O(nlogn)
time to maintain the conflict lists. However, once we
have the arrangement A(L) at hand, this can be done
significantly faster. In fact, we use a refinement of
the conflict lists: we shoot an upward vertical ray
from each point on the upper hull of P,_;, and a
downward vertical ray from each point on the lower
hull. Furthermore, we erect vertical walls through
the leftmost and the rightmost points of CH(Pj_1).
This partitions the complement of CH(Pj_1) into ver-
tical slabs S(e), for each edge e € E(Pj_1), and two
boundary slabs S(v;), S(v,), associated with the re-
spective leftmost and rightmost vertices v; and v, of
CH(Px—1). The refined conflict list of e, C7, is de-
fined as C¥ := (P \ Pr—1) N S(e). We add to this
collection the sets Cy := (Pp \ Pr—1) N S(v;) and
Cy = (Px \ Pr_1) N S(v,), which we call the re-
fined conflict lists of v; and wv,, respectively. Note
that C} C C., for every e € E(Py_1). Moreover,
Cy, (resp., Cy) is contained in Ce, U C,,, where
e1, ez € E(Py_1) are the two respective edges emanat-
ing from v; (resp., v,); see Figure 1(a). We now state
a key property of the conflict lists C (this property is
fairly standard and follows from related studies [3]):

Lemma 1 Let Q be a planar m-point set, r a positive
integer satisfying 1 < r < m, and R C) a random
subset of size r. Suppose that f(-) is a monotone non-
decreasing function, so that f(z)/x° is decreasing, for

EuroCG 2011, Morschach, Switzerland, March 28-30, 2011

some constant ¢ > 0. Then Exp [ZeeE(R) fleo)] =

(0] (r - f (%)), where ¢, is the number of points p €
Q\ R in conflict with e € E(R). O

Constructing the refined conflict lists. We next
present how to construct the refined conflict lists at
the k-th round of the algorithm. We first construct,
in a preprocessing step, the refined conflict lists C7) ,
Cy in overall O(z;) time. For the sake of the anal-
ysis, we eliminate these points from Py for the time
being, and continue processing them only at the final
step of the construction—see below.

Let UH(P;—_1) be the upper hull of P;_1, and let
LH(Py_1) be its lower hull. Having these structures
at hand, we construct the zones of UH(P;_;) and
LH(P;—_1) in A(L). This takes overall O(na(n)) time,
using the vertical decomposition of A(L) and the fact
that the zone complexity of a convex curve in a pla-
nar arrangement of n lines is O(na(n)); see [12, The-
orem 5.11].

As soon as we have the zones as above, we can
determine for each line ¢ € L the edges e € E(Py_1)
that ¢ intersects (if any). Let L; be the lines that
intersect CH(Py_1), and put Ly := L\ Ly. (At this
stage of the analysis, we ignore all lines corresponding
to the points in P, that were eliminated at the time
we processed C;; , C5)

Next, we wish to find, for each point p € Py \ Py_1
the edges in E(Pj_1) in conflict with p. If p lies in-
side CH(Pg_1), there are no conflicts. Otherwise, we
efficiently find an edge e, € E(Py_1) visible from p,
whence we search for the slab S(ej) containing p—see
below.

Let us first consider the points on the lines in L;.
Fix a line £ € L1, let p € P be the point on ¢, and let
q1, q2 be the intersections between £ and the bound-
ary of CH(Py_1). The points ¢;, ¢2 subdivide ¢ into
two rays p1, p2, and the line segment g1¢z. By con-
vexity, g1ga € CH(Px—1) and the rays p1, p2 lie out-
side CH(P;_1). Hence, if p lies on g1¢z, it must be
contained in CH(Py). Otherwise, p sees an edge of
E(Py_1) that meets one of the rays pi, p2, and we
thus set e, to be this edge (which can be determined
in constant time); see Figure 1(b).

We next process the lines in L,. Note that all points
on the lines in Lo conflict with at least one edge in
E(Py_1), since no line in Ly meets CH(Px_1). To find
these edges we determine for each ¢ € Ly a vertex
pe on the boundary of CH(Py_1) that is extreme for
¢.3 This can be done in total time O(n) by ordering
E(Py—1) and Ly according to their slopes (the lat-
ter being performed during preprocessing), and then
merging these two lists in linear time. Next, fix such
a line £ € Lo, and let p € ¢ be a query point, then p

3By this we mean that py is extremal in the direction of the
outer normal of the halfplane that is bounded by ¢ and contains
CH(Px_1).

must see one of the two edges in E(Pj_1) incident to
pe (which can be determined in constant time given
pe), and we thus set e, to be the corresponding edge;
see Figure 1(c).

We are now ready to determine, for each point
p € Py outside CH(P;—1), the slab S(ej,) that contains
it (note that es must be vertically visible from p). If
ep is vertically visible from p, we set e, := e,. Oth-
erwise, we walk along (the boundary of) CH(Pj_1),
starting from e, and progressing in an appropriate di-
rection (uniquely determined by p and ep), until the
appropriate slab is found. Using cross pointers be-
tween the edges and the points, we can thus easily
compute C¥ for each e € E(P;_1). By construction,
all traversed edges are in conflict with p, and thus
the overall time for this procedure is proportional to
the total size of the conflict lists C.. Recalling that
ce = |Ce|, we obtain

Exp| 3] =0(z)=0),

e€E(Py—1)

by Lemma 1 with f : m — m. This concludes the
construction of the refined conflict lists.

Computing CH(P;). We next describe how to con-
struct the upper hull of Py, the analysis for the lower
hull is analogous. Let (eq,...,es) be the edges along
the upper hull of Py_;, ordered from left to right.
For each e;, we sort the points in C¢, according to
their xz-order, using, e.g., merge sort, as well as the
points in C , C; . We then concatenate the sorted
lists C* C:,,---,C;,Cy , and merge the result

vl’C:N ez " vy
with the vertices of the upper hull of P,_;. Call the
resulting list @), and use Graham’s scan to find the
upper hull of @ in time O(|@]). This is also the up-
per hull of P,. Applying once again Lemma 1 with
[:m = mlogm, and putting c} := |C7], c;, := |C |,
c; = |C; |, and A > 0 an absolute constant, the
overall expected running time of this step is bounded
by

Exp|[A- (¢}, logc), + ¢} logey + Z

e€E(Pr_1)
< Exp [SA . Z
e€EE(Pr_1)

= O (zxlog (2x/2K-1)) = O(n),

¢ log CZ)}

ce log ce]

because by definition C} C (¢, so ¢ < ¢, and
Cp S Cey Tt Cey for two edges ey, ex (and similarly
for ¢). In total, we obtain that the expected time to
construct CH(Py) given CH(Py,_1) is O(na(n)), and
since there are log™ n iterations, the total running time

is O(na(n)log” n). We have thus shown:

Theorem 2 Using O(n?) space and time, we can pre-
process a set L of n lines in the plane, such that given

211

27th European Workshop on Computational Geometry, 2011

(a)

Figure 1: (a) The conflict list Ce of the edge e € E(Px—_1) contains all the lightly-shaded points, whereas the refined conflict
list C*(e) has only those points in the vertical slab S(e); (b—c) The edge e, of E(Py_1) is visible to p when (b) ¢ intersects
CH(Py_1), or (c) £ does not meet CH(Py_1). In this case p is an extreme vertex in the direction 7/, and the two dashed lines
depict the visibility lines between p and the two respective endpoints of e,.

any point set P with each point lying on a distinct
line in L, we can construct CH(P) in expected time
O(na(n)log* n).

We note that the analysis proceeds almost verba-
tim when L is just a set of line-segments in the plane.
In this case, we preprocess the lines containing the in-
put segments, and proceed as in the original problem.
Omitting the straightforward details, we obtain:

Corollary 3 If L is a set of n line-segments, we can
preprocess L in O(n?) space and time, such that given
a point set P with each point lying on a distinct seg-
ment of L, we can construct CH(P) in expected time
O(na(n)log* n).

Further results. In the full version of the paper, we
show that under the “obliviousness assumption” we
can improve the expected running time of our algo-
rithm to O(na(n)), while leaving the preprocessing
and storage time unchanged. The obliviousness as-
sumption states that the random choices of the pre-
processing phase are unknown to the adversary and
that the inputs are chosen in a manner oblivious of the
current data structure. We also show how to modify
the algorithm to make it output sensitive, and how
to produce trade-off bounds for storage and running
time.

We can extend our result to computing k-sets,
and we achieve an improved running time as long
as k = o(logn). Finally, we provide lower bounds
in the algebraic computation tree model for related
problems, such as preprocessing lines in the plane for
sorting a point set according to its x order, where each
point in the set lies on a distinct line; and preprocess-
ing a set of planes in R? for computing the convex
hull of a point set with each point incident to a dis-
tinct plane. In all these cases preprocessing does not
reduce the ©(nlogn) time bound.

212

Acknowledgments The authors wish to thank
Maarten Loffler for suggesting the problem, and Boris
Aronov and Timothy Chan for helpful discussions.
E. Ezra was supported by a PSC-CUNY Research
Award; W. Mulzer was supported in part by NSF
grant CCF-0634958, NSF CCF 083279, and a Wal-
lace Memorial Fellowship in Engineering.

References

(1] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational geometry: algorithms and applica-
tions. Springer-Verlag, Berlin, third edition, 2008.

[2] K. Buchin, M. Loffler, P. Morin, and W. Mulzer. Prepro-
cessing imprecise points for Delaunay triangulation: Sim-
plified and extended. Algorithmica. To appear.

[3] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry. II. DCG, 4(5):387—
421, 1989.

[4] O. Devillers. Delaunay triangulation of imprecise points,
preprocess and actually get a fast query time. Technical
Report 7299, INRIA, 2010.

[5] M. Held and J. S. B. Mitchell. Triangulating input-
constrained planar point sets. IPL, 109(1):54-56, 2008.

[6] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SICOMP, 15(1):287-299, 1986.

[7] M. J. van Kreveld, M. Loffler, and J. S. B. Mitchell. Pre-
processing imprecise points and splitting triangulations.
In Proc. 19th ISAAC, pages 544-555, 2008.

[8] M. LofHler. Data Imprecision in Computational Geometry.
PhD thesis, Utrecht University, 2009.

[9] M. Loffler and W. Mulzer. Triangulating the square and
squaring the triangle: quadtrees and Delaunay triangula-
tions are equivalent. In Proc. 22nd SODA, pages 1759—
1777, 2011.

[10] M. Loffler and J. Snoeyink. Delaunay triangulation of
imprecise points in linear time after preprocessing. CGTA,
43(3):234-242, 2010.

[11] R. Seidel. A simple and fast incremental randomized algo-
rithm for computing trapezoidal decompositions and for
triangulating polygons. CGTA, 1(1):51-64, 1991.

[12] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge Uni-
versity Press, New York, NY, USA, 1995.

