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A Proof of the Oja-depth Conjecture in the Plane

Nabil H. Mustafa*

Abstract

Given a set P of n points in the plane, the Oja-depth
of a point 2 € R? is defined to be the sum of the areas
of all triangles defined by x and two points from P,
normalized by the area of convex-hull of P. The Oja-
depth of P is the minimum Oja-depth of any point in
R2. The Oja-depth conjecture states that any set P
of n points in the plane has Oja-depth at most n?/9
(this would be optimal as there are examples where
it is not possible to do better). We present a proof of
this conjecture.

We also improve the previously best bounds for all
R?, d > 3, via a different, more combinatorial tech-
nique.

1 Introduction

We first present some examples of the several different
versions of data-depth that have been studied.

The location-depth of a point z is the minimum
number of points of P lying in any halfspace con-
taining « [11, 20, 19]. The Center-point Theorem [9]
asserts that there is always a point of location-depth
at least n/(d + 1), and that this is the best possible.
The point with the highest location-depth w.r.t. to
a point-set P is called the Tukey-median of P. The
corresponding computational question of finding the
Tukey-median of a point-set has been studied exten-
sively, and an optimal algorithm with running time
O(nlogn) is known in R? [7].

The simplicial-depth [13] of a point = and a set P
is the number of simplices spanned by P that contain
x. The First Selection Lemma [14] asserts that there
always exists a point with simplicial-depth at least
cq - n%1, where ¢ > 0 is a constant depending only
d. The optimal value of ¢4 is known only for d = 2,
where ¢o = 1/27 [5]. For cj is still open, though it has
been the subject of a flurry of work recently [3, 6, 10].
The current-best algorithm computes the point with
maximum simplicial-depth in time O(n*logn) [1].
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The L, depth, proposed by Weber in 1909, is de-
fined to be the sum of the distances of x to the n input
points. It is known that the point with the lowest such
depth is unique in R2.

Oja-depth. In this paper, we study another well-
known measure called the Oja depth of a point-set.
Given a set P of n points in R?, the Oja-depth (first
proposed by Oja [16] in 1983) of a point z € R?
w.r.t. P is defined to be the sum of the volumes of
all d-simplices spanned by x and d other points of
P. Formally, given a set Q C RY, let conv(Q) de-
note the convex-hull of @, and let vol(Q) denote its
d-dimensional volume. Then,

Z vol(conv(z,y1, ..., Yd))

Oja-depth(z) = vol(conv(P))

vwae(®)

The Oja-depth of P is the minimum Oja-depth over
all z € R?. From now onwards, w.l.o.g., assume that
vol(conv(P)) = 1.

Known bounds. First we note that

d
n n
< ja- < .
(d+ 1) < Oja-depth(P) < (d>

For the upper-bound, observe that any d-simplex
spanned by points inside the convex-hull of P can
have volume at most 1, and so a trivial upper-bound
for Oja-depth of any P C R? is (Z), achieved by pick-
ing any z € conv(P). For the lower-bound, construct
P by placing n/(d 4+ 1) points at each of the d + 1
vertices of a unit-volume simplex in R?.

The conjecture [8] states that this lower bound is
tight:

Conjecture 1 Oja-depth(P) < ()¢ for any P C
R? of n points.

The current-best upper-bound [8] is that the Oja-
depth of any set of n points is at most () /(d+1). In
particular, for d = 2, this gives n?/6.

The Oja-depth conjecture states the existence of a
low-depth point, but given P, computing the lowest-
depth point is also an interesting problem. In RZ2,
Rousseeuw and Ruts [18] presented a straightforward
O(n®logn) time algorithm for computing the lowest-
depth point, which was improved to the current-best
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algorithm with running time O(nlog®n) [1]. An
approximate algorithm utilizing fast rendering sys-
tems on current graphics hardware was presented
in [12, 15]. For general d, various heuristics for
computing points with low Oja-depth were given by
Ronkainen, Oja and Orponen [17].

Our results. In Section 2, we present our main theo-
rem, which completely resolves the conjecture for the
planar case.

Theorem 1 Every set P of n points in R? has Oja-
2

depth at most . Furthermore, such a point can be

computed in O(nlogn) time.

In Section 3, using completely different (and more
combinatorial) techniques for higher dimensions, we
also prove the following:

Theorem 2 Every set P ofn points in R?, d > 3, has

. nd n —
Oja-depth at most 275 — W%dﬂ)!(d) +O0(n4=1).

This improves the previously best bounds by an order
of magnitude.

2 The optimal bound for the plane

We now come to prove the optimal bound for R2.
First, let us give some basic definitions. The center
of mass or centroid of a convex set X is defined as

fm x dx
oX) = m.

For a discrete point set P, the center of mass is sim-
ply defined as the center of mass of the convex hull of
P. When we talk about the centroid of P, we refer
to the center of mass of the convex hull and hope the
reader does not confuse this with the discrete cen-
troid > p/|P|. In what follows, we will bound the
Oja-depth of the centroid of a set, and show that it is
worst-case optimal. Our proof will rely on the follow-
ing two Lemmas.

Lemma 3 [Winternitz [4]] Every line through the
centroid of a convex object has at most g of the total
area on either side.

Lemma 4 [8] Let P be a convex object with unit area
and let ¢ be its center of mass. Then every simplex
inside P which has c as a vertex has area at most %

To simplify matters, we will use the following
proposition.

Proposition 5 If we project an interior point p € P
radially outwards from the centroid c to the boundary
of the convex hull, the Oja-depth of the point ¢ does
not decrease.
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Proof. First, observe that the center of mass does
not change. It suffices to show that every triangle
that has p as one of its vertices increases its area.
Let T := A(e, p,q) be any triangle. The area of T is
llc — p|| - b, where h is the height of T with respect
to p — c. If we move p radially outwards to a point p’,
h does not change, but ||c — p'|| > ||c — p]|. O

This implies that in order to prove an upper bound,
we can assume that all points lie on the convex hull.

From now on, let P be a set of points, and let
¢ := c(conv(P)) denote its center of mass as defined
above. Further, let p1, ..., p, denote the points sorted
clockwise by angle from c¢. We define the distance of
two points as the difference of their position in this
order (modulo n). A triangle that is formed by ¢ and
two points at distance ¢ is called an i-triangle, or tri-
angle of type i. Observe that for each i, 1 < i < |n/2],
there are exactly n triangles of type . Further, if n
is even, then there are n/2 triangles of type |n/2],
otherwise there are n. These constitute all possible
triangles.

Let C C P, and let C be they boundary of the
convex hull of C. This will be called a cycle. The
length of a cycle is simply the number of elements in
C. A cycle C of length i induces i triangles that arise
by taking all the triangle formed by an edge in C and
the center of mass ¢ (of conv(P)). The area induced
by C is the sum of areas of these i triangles.

The triangles induced by the entire set P form a
partition of conv(P). Thus, Lemma 5 implies the fol-
lowing:

Corollary 6 The total area of all triangles of type 1
is exactly 1.

The following shows that we can generalize this
Lemma, i.e., that we can bound the total area induced
by any cycle.

Lemma 7 Let C be a cycle. Then C induces a total
area of at most 1.

Proof. We distinguish two cases.

Case 1: The centroid lies in the convex hull of C.
In this case, all triangles are disjoint, so the area is at
most 1. See Fig. 1(a).

Case 2: The centroid does not lie in the convex hull
of C. By the Separation Theorem [14], there is a line
through c that contains all the triangles. Then we
can remove one triangle to get a set of disjoint trian-
gles, namely the one induced by the pair {p;,,pi, .}
that has ¢ on the left side. By Lemma 3, the area
of the remaining triangles can thus be at most 5/9.
By Lemma 4, the removed triangle has an area of at
most 1/3. Thus, the total area is at most 8/9. See
Fig. 1(b). Here, the gray triangle can be removed to
get a set of disjoint triangles.
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(a) Case 1 (b) Case 2

Figure 1: The two cases

We now prove the crucial lemma, which is a general
version of Corollary 6.

Lemma 8 The total area of all triangles of type i is
at most 1.

Proof. We will proceed as follows: For fixed i, we will
create n cycles. Each cycle will consist of one triangle
of type i, and n — ¢ triangles of type 1, multiplicities
counted. We then determine the total area of these
cycles and subtract the area of all 1-triangles. This
will give the desired result.

Let p1,...,pn be the points ordered by angles from
the centroid c. Let C; be the cycle consisting of the
n —i+ 1 points P — {Pit1 modn,---»>Pitj—1 mod n}-
This is a cycle that consists of one triangle of type i,
namely the one starting a p;, and n — ¢ triangles of
type 1.

By Lemma 7, every cycle C; induces an area of at
most 1. If we sum up the areas of all n cycles Cj,
1 <5 < n, we thus get an area of at most n.

We now determine how often we have counted each
triangle. Each i-triangle is counted exactly once. Fur-
ther, for every cycle we count n — ¢ triangles of type
1. For reasons of symmetry, each 1-triangle is counted
equally often. Thus, each is counted ezactly n—i times
over all the cycles. By Corollary 6, their area is ex-
actly n — i, which we can subtract from n to get the
total area of the i-triangles:

Z area(T) < n-— < Z (n—1) area(T))

i—AT 1-A T
= n—(n—1i)=1i.

This completes the proof. ([l

Theorem 9 Let P be any set of points in the plane
and ¢ be the centroid of 1't25 convex hull. Then the
Oja-depth of c is at most 4.

Proof. We will bound the area of the triangles de-
pending on their type. For i-triangles with 1 < ¢ <
n/3]|, we will use Lemma 8. For i-triangles with

[n/3] < i< |n/2], this would give us a bound worse
than n/3, so we will use Lemma 4 for each of these.

By Lemma 8, the sum of the areas of all triangles
of type at most |n/3] is at most

[n/3] 2
Z i— [n/3] (Lg/?’J +1) < %+%|_n/3j
i=1

For the remaining triangles, we use Lemma 4 to bound
the size of each by 1/3. Thus, in total we get

n?  n(n/2]—[n/3]) n

Oja-depth(P) < — —.

ja-depth(P) < 18 + 3 + 5
By a simple case distinction, it is easy to see that the
lower order term disappears. This finishes the proof.
O

3 Higher Dimensions

We now present improved bounds for the Oja-depth
problem in dimensions greater than two. Before the
main theorem, we need the following two lemmas.

Lemma 10 Let P be a set of n points in R?. Let

g € RY  Then any line | through q intersects at

most f(n,d) (d — 1)-simplices spanned by P, where
d

f(n,d) = % +O0(nd1).

Proof. Project P onto the hyperplane H orthogonal
to I to get the point-set P’ in R4~!. The line [ becomes
a point on H, say point p;. Then [ intersects the
(d — 1)-simplex spanned by {pi,...,pq} if and only
if the convex hull of the corresponding points in P’
contain the point p;.

By a result of Barany [2], any point in R? is con-
tained in at most

2n—d) ((n+d+2)/2
n+d+2( d+1 )+O(”d)

simplices induced by a point set.
Applying this lemma to P’ in R*~! and simplifying
the expression, we get the desired result. O

Lemma 11 Given any set P of n points in R?, there
exists a point q such that any half-infinite ray from
q intersects at least %(Z) (d — 1)-simplices

spanned by P.

Proof. Gromov [10] showed that, given any set
P, there exists a point ¢ contained in at least
Wgﬂl)!( dil) simplices spanned by P. Now any
half-infinite ray from ¢ must intersect exactly one
(d — 1)-dimensional face (which is a (d — 1)-simplex)
of each d-simplex containing ¢, and each such (d —1)-
simplex can be counted at most n — d times. O

141



27th European Workshop on Computational Geometry, 2011

Theorem 12 Given any set P of n points in R?,
there exists a point ¢ with Oja-depth at most

B .

T 20l (d+ 1)2(d+ 1)

ond 2d n
d

) +O(nd=1).

Proof. Let ¢ be the point from Lemma 11. Let w(r)
denote the number of simplices spanned by ¢ and d
points from P that contain r. In what follows, we will
give a bound on w(r), and thus on the Oja-depth of
q.

If r is contained in a simplex, then any half-infinite
ray ¢ intersects a (d—1)-facet of that simplex. There-
fore, w(r) is upper-bounded by the number of (d—1)-
simplices spanned by P that are intersected by the
ray gr.

To upper-bound this, note that the ray starting
from ¢ but in the opposite direction to the ray q7, in-
tersects at least W(Z) (d — 1)-simplices (by
Lemma 11). On the other hand, by Lemma 10, the
entire line passing through ¢ and r intersects at most
22%:! +O0(n%1) (d — 1)-simplices. These two together
imply that the ray g intersects at most B (d — 1)-
simplices, and this is also an upper-bound on w(r).
Finally, we have

Oja-depth(q, P) = / w(x) dx
conv(P)
< / Bdx =B
conv(P)
finishing the proof. O
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