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A Proof of the Oja-depth Conjecture in the Plane
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Abstract

Given a set P of n points in the plane, the Oja-depth
of a point x ∈ R2 is defined to be the sum of the areas
of all triangles defined by x and two points from P ,
normalized by the area of convex-hull of P . The Oja-
depth of P is the minimum Oja-depth of any point in
R2. The Oja-depth conjecture states that any set P
of n points in the plane has Oja-depth at most n2/9
(this would be optimal as there are examples where
it is not possible to do better). We present a proof of
this conjecture.

We also improve the previously best bounds for all
Rd, d ≥ 3, via a different, more combinatorial tech-
nique.

1 Introduction

We first present some examples of the several different
versions of data-depth that have been studied.

The location-depth of a point x is the minimum
number of points of P lying in any halfspace con-
taining x [11, 20, 19]. The Center-point Theorem [9]
asserts that there is always a point of location-depth
at least n/(d + 1), and that this is the best possible.
The point with the highest location-depth w.r.t. to
a point-set P is called the Tukey-median of P . The
corresponding computational question of finding the
Tukey-median of a point-set has been studied exten-
sively, and an optimal algorithm with running time
O(n log n) is known in R2 [7].

The simplicial-depth [13] of a point x and a set P
is the number of simplices spanned by P that contain
x. The First Selection Lemma [14] asserts that there
always exists a point with simplicial-depth at least
cd · nd+1, where c > 0 is a constant depending only
d. The optimal value of cd is known only for d = 2,
where c2 = 1/27 [5]. For c3 is still open, though it has
been the subject of a flurry of work recently [3, 6, 10].
The current-best algorithm computes the point with
maximum simplicial-depth in time O(n4 log n) [1].
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The L1 depth, proposed by Weber in 1909, is de-
fined to be the sum of the distances of x to the n input
points. It is known that the point with the lowest such
depth is unique in R2.

Oja-depth. In this paper, we study another well-
known measure called the Oja depth of a point-set.
Given a set P of n points in Rd, the Oja-depth (first
proposed by Oja [16] in 1983) of a point x ∈ Rd

w.r.t. P is defined to be the sum of the volumes of
all d-simplices spanned by x and d other points of
P . Formally, given a set Q ⊂ Rd, let conv(Q) de-
note the convex-hull of Q, and let vol(Q) denote its
d-dimensional volume. Then,

Oja-depth(x) =
∑

y1,...,yd∈(P
d)

vol(conv(x, y1, . . . , yd))

vol(conv(P ))

The Oja-depth of P is the minimum Oja-depth over
all x ∈ Rd. From now onwards, w.l.o.g., assume that
vol(conv(P )) = 1.

Known bounds. First we note that(
n

d + 1

)d

≤ Oja-depth(P ) ≤
(
n

d

)
.

For the upper-bound, observe that any d-simplex
spanned by points inside the convex-hull of P can
have volume at most 1, and so a trivial upper-bound
for Oja-depth of any P ⊂ Rd is

(
n
d

)
, achieved by pick-

ing any x ∈ conv(P ). For the lower-bound, construct
P by placing n/(d + 1) points at each of the d + 1
vertices of a unit-volume simplex in Rd.

The conjecture [8] states that this lower bound is
tight:

Conjecture 1 Oja-depth(P ) ≤ ( n
d+1 )d for any P ⊂

Rd of n points.

The current-best upper-bound [8] is that the Oja-
depth of any set of n points is at most

(
n
d

)
/(d+ 1). In

particular, for d = 2, this gives n2/6.
The Oja-depth conjecture states the existence of a

low-depth point, but given P , computing the lowest-
depth point is also an interesting problem. In R2,
Rousseeuw and Ruts [18] presented a straightforward
O(n5 log n) time algorithm for computing the lowest-
depth point, which was improved to the current-best
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algorithm with running time O(n log3 n) [1]. An
approximate algorithm utilizing fast rendering sys-
tems on current graphics hardware was presented
in [12, 15]. For general d, various heuristics for
computing points with low Oja-depth were given by
Ronkainen, Oja and Orponen [17].

Our results. In Section 2, we present our main theo-
rem, which completely resolves the conjecture for the
planar case.

Theorem 1 Every set P of n points in R2 has Oja-

depth at most n2

9 . Furthermore, such a point can be
computed in O(n log n) time.

In Section 3, using completely different (and more
combinatorial) techniques for higher dimensions, we
also prove the following:

Theorem 2 Every set P of n points in Rd, d ≥ 3, has

Oja-depth at most 2nd

2dd!
− 2d

(d+1)2(d+1)!

(
n
d

)
+ O(nd−1).

This improves the previously best bounds by an order
of magnitude.

2 The optimal bound for the plane

We now come to prove the optimal bound for R2.
First, let us give some basic definitions. The center
of mass or centroid of a convex set X is defined as

c(X) =

∫
x∈X x dx

area (X)
.

For a discrete point set P , the center of mass is sim-
ply defined as the center of mass of the convex hull of
P . When we talk about the centroid of P , we refer
to the center of mass of the convex hull and hope the
reader does not confuse this with the discrete cen-
troid

∑
p/|P |. In what follows, we will bound the

Oja-depth of the centroid of a set, and show that it is
worst-case optimal. Our proof will rely on the follow-
ing two Lemmas.

Lemma 3 [Winternitz [4]] Every line through the
centroid of a convex object has at most 5

9 of the total
area on either side.

Lemma 4 [8] Let P be a convex object with unit area
and let c be its center of mass. Then every simplex
inside P which has c as a vertex has area at most 1

3 .

To simplify matters, we will use the following
proposition.

Proposition 5 If we project an interior point p ∈ P
radially outwards from the centroid c to the boundary
of the convex hull, the Oja-depth of the point c does
not decrease.

Proof. First, observe that the center of mass does
not change. It suffices to show that every triangle
that has p as one of its vertices increases its area.
Let T := ∆(c, p, q) be any triangle. The area of T is
1
2‖c − p‖ · h, where h is the height of T with respect
to p− c. If we move p radially outwards to a point p′,
h does not change, but ‖c− p′‖ > ‖c− p‖. �

This implies that in order to prove an upper bound,
we can assume that all points lie on the convex hull.

From now on, let P be a set of points, and let
c := c(conv(P )) denote its center of mass as defined
above. Further, let p1, . . . , pn denote the points sorted
clockwise by angle from c. We define the distance of
two points as the difference of their position in this
order (modulo n). A triangle that is formed by c and
two points at distance i is called an i-triangle, or tri-
angle of type i. Observe that for each i, 1 ≤ i < bn/2c,
there are exactly n triangles of type i. Further, if n
is even, then there are n/2 triangles of type bn/2c,
otherwise there are n. These constitute all possible
triangles.

Let C ⊆ P , and let C be they boundary of the
convex hull of C. This will be called a cycle. The
length of a cycle is simply the number of elements in
C. A cycle C of length i induces i triangles that arise
by taking all the triangle formed by an edge in C and
the center of mass c (of conv(P )). The area induced
by C is the sum of areas of these i triangles.

The triangles induced by the entire set P form a
partition of conv(P ). Thus, Lemma 5 implies the fol-
lowing:

Corollary 6 The total area of all triangles of type 1
is exactly 1.

The following shows that we can generalize this
Lemma, i.e., that we can bound the total area induced
by any cycle.

Lemma 7 Let C be a cycle. Then C induces a total
area of at most 1.

Proof. We distinguish two cases.
Case 1 : The centroid lies in the convex hull of C.

In this case, all triangles are disjoint, so the area is at
most 1. See Fig. 1(a).

Case 2 : The centroid does not lie in the convex hull
of C. By the Separation Theorem [14], there is a line
through c that contains all the triangles. Then we
can remove one triangle to get a set of disjoint trian-
gles, namely the one induced by the pair {pij , pij+1

}
that has c on the left side. By Lemma 3, the area
of the remaining triangles can thus be at most 5/9.
By Lemma 4, the removed triangle has an area of at
most 1/3. Thus, the total area is at most 8/9. See
Fig. 1(b). Here, the gray triangle can be removed to
get a set of disjoint triangles.

�
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c

(a) Case 1

c

(b) Case 2

Figure 1: The two cases

We now prove the crucial lemma, which is a general
version of Corollary 6.

Lemma 8 The total area of all triangles of type i is
at most i.

Proof. We will proceed as follows: For fixed i, we will
create n cycles. Each cycle will consist of one triangle
of type i, and n − i triangles of type 1, multiplicities
counted. We then determine the total area of these
cycles and subtract the area of all 1-triangles. This
will give the desired result.

Let p1, . . . , pn be the points ordered by angles from
the centroid c. Let Cj be the cycle consisting of the
n − i + 1 points P − {pi+1 mod n, . . . , pi+j−1 mod n}.
This is a cycle that consists of one triangle of type i,
namely the one starting a pj , and n − i triangles of
type 1.

By Lemma 7, every cycle Cj induces an area of at
most 1. If we sum up the areas of all n cycles Cj ,
1 ≤ j ≤ n, we thus get an area of at most n.

We now determine how often we have counted each
triangle. Each i-triangle is counted exactly once. Fur-
ther, for every cycle we count n − i triangles of type
1. For reasons of symmetry, each 1-triangle is counted
equally often. Thus, each is counted exactly n−i times
over all the cycles. By Corollary 6, their area is ex-
actly n − i, which we can subtract from n to get the
total area of the i-triangles:

∑
i−∆ T

area(T ) ≤ n−

( ∑
1−∆ T

(n− i) area(T )

)
= n− (n− i) = i.

This completes the proof. �

Theorem 9 Let P be any set of points in the plane
and c be the centroid of its convex hull. Then the
Oja-depth of c is at most n2

9 .

Proof. We will bound the area of the triangles de-
pending on their type. For i-triangles with 1 ≤ i ≤
bn/3c, we will use Lemma 8. For i-triangles with

bn/3c < i ≤ bn/2c, this would give us a bound worse
than n/3, so we will use Lemma 4 for each of these.

By Lemma 8, the sum of the areas of all triangles
of type at most bn/3c is at most

bn/3c∑
i=1

i =
bn/3c (bn/3c+ 1)

2
≤ n2

18
+

1

2
bn/3c .

For the remaining triangles, we use Lemma 4 to bound
the size of each by 1/3. Thus, in total we get

Oja-depth(P ) ≤ n2

18
+

n (bn/2c − bn/3c)
3

+
n

6
.

By a simple case distinction, it is easy to see that the
lower order term disappears. This finishes the proof.

�

3 Higher Dimensions

We now present improved bounds for the Oja-depth
problem in dimensions greater than two. Before the
main theorem, we need the following two lemmas.

Lemma 10 Let P be a set of n points in Rd. Let
q ∈ Rd. Then any line l through q intersects at
most f(n, d) (d − 1)-simplices spanned by P , where

f(n, d) = 2nd

2dd!
+ O(nd−1).

Proof. Project P onto the hyperplane H orthogonal
to l to get the point-set P ′ in Rd−1. The line l becomes
a point on H, say point pl. Then l intersects the
(d − 1)-simplex spanned by {p1, . . . , pd} if and only
if the convex hull of the corresponding points in P ′

contain the point pl.
By a result of Barany [2], any point in Rd is con-

tained in at most

2(n− d)

n + d + 2

(
(n + d + 2)/2

d + 1

)
+ O(nd)

simplices induced by a point set.
Applying this lemma to P ′ in Rd−1 and simplifying

the expression, we get the desired result. �

Lemma 11 Given any set P of n points in Rd, there
exists a point q such that any half-infinite ray from
q intersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d − 1)-simplices

spanned by P .

Proof. Gromov [10] showed that, given any set
P , there exists a point q contained in at least

2d
(d+1)(d+1)!

(
n

d+1

)
simplices spanned by P . Now any

half-infinite ray from q must intersect exactly one
(d − 1)-dimensional face (which is a (d − 1)-simplex)
of each d-simplex containing q, and each such (d−1)-
simplex can be counted at most n− d times. �

141



27th European Workshop on Computational Geometry, 2011

Theorem 12 Given any set P of n points in Rd,
there exists a point q with Oja-depth at most

B :=
2nd

2dd!
− 2d

(d + 1)2(d + 1)!

(
n

d

)
+ O(nd−1).

Proof. Let q be the point from Lemma 11. Let w(r)
denote the number of simplices spanned by q and d
points from P that contain r. In what follows, we will
give a bound on w(r), and thus on the Oja-depth of
q.

If r is contained in a simplex, then any half-infinite
ray −→qr intersects a (d−1)-facet of that simplex. There-
fore, w(r) is upper-bounded by the number of (d−1)-
simplices spanned by P that are intersected by the
ray −→qr.

To upper-bound this, note that the ray starting
from q but in the opposite direction to the ray −→qr, in-
tersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d − 1)-simplices (by

Lemma 11). On the other hand, by Lemma 10, the
entire line passing through q and r intersects at most
2nd

2dd!
+ O(nd−1) (d− 1)-simplices. These two together

imply that the ray −→qr intersects at most B (d − 1)-
simplices, and this is also an upper-bound on w(r).
Finally, we have

Oja-depth(q, P ) =

∫
conv(P )

w(x) dx

≤
∫

conv(P )

B dx = B

finishing the proof. �
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