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Abstract

We consider the following online problem, motivated
by grid computing: Given an N ×N square S, and a
sequence of numbers ni with

∑i
j=0 nj ≤ N2; at each

step i, select a region Ci of previously unassigned area
ni in S. The objective is to minimize the maximum
average Manhattan distance between points from the
same set Ci. We present a competitive online strategy,
based on a thorough analysis of space-filling curves;
for continuous shapes, we prove a factor of 1.8092,
and 1.7849 for discrete shapes.

1 Introduction

Many optimization problems deal with allocating
point sets to a given environment. Frequently, the
problem is to find compact allocations, such that
points from the same set are closely together. One
natural measure is to consider the average distance
between points. A practical example occurs in the
context of grid computing, where one needs to assign
a sequence of jobs i, each requiring ni processors, to
a subset Ci of nodes of a square grid, such that the
average communication delay between nodes of the
same job is minimized; as this delay corresponds to
the number of grid hops [6], this motivates the ge-
ometric task of finding subsets with a small average
Manhattan distance.

Even in an offline setting without any occupied
nodes, finding an optimal allocation for a single set
of size ni is not an easy task; the results are typically
“round” shapes. If a whole sequence of sets have to be
allocated, packing such shapes onto the grid will pro-
duce gaps, causing later sets to become scattered, and
thus lead to extremely bad average distances. Even
packing rectangular shapes is not a remedy, as the
resulting packing problem is NP-hard, and scattered
allocations may still occur.

In this paper, we give a first algorithmic analysis
for the online problem. Using an allocation scheme
based on a space-filling curve, we establish competi-
tive factors of 1.8092 and 1.7849 for minimizing the
maximum average Manhattan distance within an al-
located set.

∗Algorithms Group, Braunschweig Institute of Technology,
Germany, {s.fekete,n.schweer,j-m.reinhardt}@tu-bs.de

Related Work The problem of finding the “opti-
mal shape of a city”, i.e., a shape of unit area that
minimizes the average distance, was first considered
by Karp, McKellar, and Wong [4]; independently,
Bender, Bender, Demaine, and Fekete [1] showed that
this shape can be characterized by a differential equa-
tion for which no closed form is known. For the case
of a finite set of n points that needs to be allocated
to a grid, Demaine et al. [3] showed that there is an
O(n7.5) dynamic-programming algorithm. In an of-
fline setting in the presence of occupied points, Bender
et al. [2] gave some simple 1.75-approximation algo-
rithms, and a polynomial-time approximation scheme.
Space-filling curves for processor allocation have been
used before [6]; in particular, Wattenberg [10] has pro-
posed an allocation scheme similar to ours, for pur-
poses of minimizing the maximum diameter of an al-
located shape. However, neither paper has yielded
algorithmic results for our problem, and no constant
competitive factor was proven.

2 Preliminaries

We examine the problem of selecting shapes from a
square, such that the maximum average L1-distance
of the shapes is minimized. We first formulate the
problem more precisely.

Definition 1 A city is a shape in the plane with fixed
size. For a city C of size n we call

c(C) =
1
2

∫∫∫∫
(x,y),(u,v)∈C

|x−u|+ |y−v|dv dudy dx

the Manhattan distance between all pairs of points in
C and

φ(C) =
2 c(C)
n5/2

the φ-value or average distance of C.

We divide by n2.5 to get a dimensionless measure
for the average distance, see [1].

The problem For a sequence n1, n2, . . . , nk ∈ R+

with
∑k

i=1 ni ≤ 1, cities C1, C2, . . . , Ck are to be cho-
sen from the unit square, such that max1≤i≤k φ(Ci)
is minimized.

Although it has not been proven, the problem is as-
sumed to be NP-hard, see [8]; if we restrict city shapes
to be rectangles, there is an immediate reduction from
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deciding whether a set of squares can be packed into
a larger square [5]. (A special case arises from con-
sidering integers, which corresponds to choosing grid
locations.) On the one hand, to make things a lit-
tle easier, we only consider sizes ni which are larger
than a known lower bound ε. On the other hand,
our approximation works online, i.e., we choose the
cities in a specified order, and no changes are made
to previously allocated cities.

There are lower bounds for max1≤i≤kφ(Ci) that
generally cannot be achieved by any algorithm. One
important result is the following theorem.

Theorem 1 Let C be any city. Then φ(C) ≥
0.650245.

A proof can be found in [1]. For n1 = 1 any algo-
rithm must select the whole unit square, thus 2/3, the
φ-value of a square, is a lower bound. We will discuss
approaches for a better bound in the end.

3 An Algorithm

While long and narrow shapes tend to have large φ-
values, shapes that fill large parts of an enclosing rect-
angle with similar width and height usually have bet-
ter average distances. Our approach uses the space-
filling Hilbert curve to yield a provably constant com-
petitive factor.

First, we divide the unit square into a grid consist-
ing of 2r × 2r cells, such that the size of each cell of
the grid is equal to or less than the lower bound of
the ni. The Hilbert curve is based on a recursive con-
struction scheme and becomes space-filling for infinite
repetition of said scheme [7]. For a finite number r
of repetitions, the curve traverses the used grid. For
1 ≤ r ≤ 3, the curve is shown in figure 1. Thus, the
Hilbert curve provides an order for the cells of the
grid.

Figure 1: Hilbert curve with 1 ≤ r ≤ 3

Furthermore, we denote the size of each cell by
c = 4−r, and the cell in row j and column k after r
iterations by E2

r [j][k] = [2−r(j − 1), 2−rj]× [2−r(k −
1), 2−rk]. For the sake of concise presentation of our
analysis within this short abstract, we assume that
every input ni is an integral multiple of c; in general,
we can proceed to make the grid self-refining. The
description of the algorithm is simple: for every in-
put ni we choose the next ni/c cells traversed by the
Hilbert curve as the city Ci, starting in the upper left
corner of the grid.

A formal implementation of the curve can be done
using text-rewriting rules, such as the ones in [9].

4 Analysis

Our analysis of the algorithm focuses on two points:
describing a way to systematically find worst cases of
a specified size and finding a competitive factor.

Definition 2 We denote by Wi a city with i cells (or
i whole E2

l [j][k] for l 6= r) that is a worst-case output
of our strategy for cities of size i.

As all cities generated by our strategy consist of an
integral number of cells, the φ-value of a produced
city can be calculated considering only the distances
and count of the cells occupied in the grid. Thus, the
Wi can be found by simply comparing the distances of
all i-tuples of cells on the grid, which are successively
traversed by the Hilbert curve. This leaves the ques-
tion of how large the grid has to be chosen to contain
a city Wi traversed by the curve.

Lemma 2 For r = dlog2(di/4e + 1)e + 2 the Hilbert
curve traverses a city Wi.

We do not give a proof here. It can be done using
the text-rewriting rules from [9] to construct a formal
grammar and show via induction that after a certain
number of substitutions, every possible sequence of
symbols of a particular length has been generated,
i.e., the sequence corresponding to the city with the
greatest φ-value must have been produced as well. We
used this approach to determine the shapes and φ-
values of the Wi for i ≤ 65. The average distances
for 16 ≤ i ≤ 63 can be seen in the fourth column of
table 1; the worst cases among the examined ones are
W56 and W14, which have the same shape, shown in
figure 2.

Figure 2: W14

The worst cases can also be used to find an upper
bound for the maximum average distance and ulti-
mately give a competitive factor.

Lemma 3 For every 0 ≤ l ≤ r the E2
l [j][k] are tra-

versed by the Hilbert Curve in a specific order, i.e.,
the curve does not only pose an order on the cells of
the grid, but on each set of the E2

l [j][k].

Again, we do not give a formal proof here; the claim
follows directly from the definition of the Hilbert
curve, as its construction scheme is invoked recur-
sively for sub-squares of the unit square.
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i c∗(Wi) ccity(i) φ(Wi) Φ(Wi+2)

16 434 2/3 338 2/3 0.8490 1.1764

17 512 2/3 396 1/3 0.8605 1.1497

18 602 1/3 457 1/3 0.8764 1.1174

19 685 522 1/3 0.8706 1.1058

20 768 591 2/3 0.8587 1.1098

21 870 663 0.8610 1.0903

22 992 2/3 749 1/3 0.8745 1.0713

23 1101 2/3 839 1/3 0.8685 1.0424

24 1216 933 0.8619 1.0150

25 1322 1/3 1032 1/3 0.8463 0.9777

26 1432 1134 0.8309 0.9701

27 1527 2/3 1249 0.8066 0.9785

28 1672 1365 1/3 0.8061 0.9864

29 1853 1/3 1492 0.8184 0.9773

30 2046 1622 2/3 0.8301 0.9710

31 2213 1759 2/3 0.8272 0.9726

32 2393 1/3 1898 2/3 0.8263 0.9791

33 2602 2057 0.8319 0.9735

34 2835 2/3 2216 2/3 0.8414 0.9691

35 3045 2384 0.8403 0.9712

36 3266 2554 2/3 0.8400 0.9772

37 3519 1/3 2727 2/3 0.8453 0.9726

38 3799 1/3 2921 2/3 0.8536 0.9682

39 4049 2/3 3117 2/3 0.8527 0.9570

40 4309 1/3 3322 0.8517 0.9463

41 4545 3530 1/3 0.8445 0.9307

42 4788 3749 0.8376 0.9214

43 5009 3976 0.8262 0.9306

44 5266 2/3 4205 1/3 0.8202 0.9393

45 5641 1/3 4456 2/3 0.8306 0.9393

46 6031 1/3 4712 0.8405 0.9395

47 6379 2/3 4970 1/3 0.8425 0.9439

48 6741 1/3 5234 0.8446 0.9505

49 7147 1/3 5507 1/3 0.8505 0.9512

50 7586 1/3 5788 0.8583 0.9516

51 7993 6076 1/3 0.8606 0.9559

52 8411 1/3 6368 0.8628 0.9620

53 8878 6691 2/3 0.8683 0.9619

54 9379 1/3 7017 1/3 0.8754 0.9617

55 9835 7352 1/3 0.8768 0.9569

56 10304 7690 0.8781 0.9522

57 10733 8033 2/3 0.8751 0.9445

58 11173 1/3 8384 2/3 0.8723 0.9372

59 11583 2/3 8749 1/3 0.8665 0.9268

60 12005 1/3 9117 1/3 0.8610 0.9225

61 12391 9506 1/3 0.8527 0.9232

62 12862 9904 2/3 0.8499 0.9201

63 13415 10305 1/3 0.8517 0.9175

Table 1: Total and average distances for cities Wn

allocated according to our strategy, as well as the op-
timal values ccity(n) according to [3].

Lemma 4 Let C be a city generated by our strategy
with size n ≤ k 4j c for j ∈ {0, 1, . . . , r}, k ∈ N. Fur-
thermore, let W be a city Wk+1 of size (k + 1) 4j c.
Then c(C) ≤ c(W ) holds.

Proof. C cannot contain parts of more than k+ 1 of
the sub-squares E2

r−j [p][q]. Otherwise we would have
a contradiction to Lemma 3, as it would contain fewer
than k − 1 complete sub-squares, thus implying that
they are not traversed in order.

Consequently, C can be bounded by a city X con-
sisting of k + 1 sub-squares of size 4j c, and c(C) ≤
c(X) holds. As there is no city consisting of k+1 sub-
squares with a greater φ-value than Wk+1, c(X) ≤
c(W ) holds as well. Combining both inequalities
yields c(C) ≤ c(W ). �

Theorem 5 Our strategy guarantees
max1≤i≤k φ(Ci) ≤ 1.1764.

Proof. For r ≤ 2 the only possible inputs n are
c ≤ n ≤ 16c. In this case, φ(C) can be bounded
by max1≤i≤16 φ(Wi) = φ(W14) ≈ 0.8781.

In the following consider r > 2 and 4jc < n ≤ 4j+1c
for j ∈ {2, . . . , r − 1}.

For each of the cases l 4j−2c < n ≤ (l + 1) 4j−2c
with l ∈ {16, 17, . . . , 63} we can use Lemma 4 to get
a city W of size (l + 2) 4j−2 c and shape Wl+2, such
that c(C) is less than or equal to c(W ).

Thus, we get the following inequality:

φ(C) ≤ 2 c(W )
(l 4j−2c)5/2

Because of the definition of the φ-value, this yields

φ(Wl+2)((l + 2) 4j−2c)5/2

(l 4j−2c)5/2
= φ(Wl+2)

(
1 +

2
l

)5/2

We denote φ(Wl+2)
(
1 + 2

l

)5/2 by Φ(Wl) and list
the values of Φ(Wl) for 16 ≤ l ≤ 63 in the fifth column
of table 1. Therefore, φ(C) ≤ 1.1764 holds. �

Corollary 6 Our strategy achieves a competitive
factor of 1.8092.

Proof. According to Theorem 1, no algorithm can
guarantee a better φ-value than 0.650245. Our strat-
egy yields an upper bound of 1.1764. This results in
a factor of 1.1764/0.650245 ≈ 1.8092. �

5 Discrete Point Sets

Our above analysis relies on continuous weight dis-
tributions, which imply the lower bound on φ-values
stated in Theorem 1. This does include the case of
integer values ni. However, as discussed in [3], con-
sidering discrete weight distributions may allow lower
average distances; e.g., a single point has an average
distance of 0. As a consequence, towns (subsets of
the integer grid) have lower average distances than
cities of the same total weight. However, we still get
a competitive ratio for the case of online towns.
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Definition 3 ([3]) An n-town T is a subset of n
points in the integer grid. Its normalized average
Manhattan distance is

φ(T ) =
2c(T )
n5/2

=
∑

s∈T

∑
t∈T ‖s− t‖1
n5/2

Theorem 7 For n-towns, our strategy guarantees a
competitive factor of at most 1.7849 for the φ-value.

Proof. Analogous to Theorem 5, we consider the val-
ues up to n = 64, and show that the worst case is
attained for i = 16, which yields an upper bound of
1.123. (The analog to Table 1 is omitted for lack
of space.) For a lower bound, the general value of
0.650245 for φ-values cannot be applied, as discrete
point sets may have lower average distance. Instead,
we verify that the ratio of achieved φ to optimal φ
for n ≤ 64 is less than 1.7849; for 65 ≤ n ≤ 80, Ta-
ble 1 in [3] allows us to verify that φ ≥ 0.629171.
For n ≥ 81, we make use of equation (5), p. 89 of
[3] to show the same lower bound of 0.629171; details
are slightly involved and omitted for lack of space.
Overall, we get a competitive ratio bounded by upper
divdided by lower bound, i.e., 1.7849. �

6 Lower Bounds

We demonstrate that there are non-trivial lower
bounds for a competitive factor by considering the
online scenario for towns.

Theorem 8 No online strategy can guarantee a com-
petitive factor below 64√

5
5 = 1.144866....

Proof. Consider a 3x3 square, and let n1 = 4. If the
strategy allocates a 2x2 square (for a total distance of
8), then n2 = 5, and the resulting L-shape has a total
distance of 20 and a φ-value of 40/52.5 = 0.715541...
Allocating the first town with an L-shape of total dis-
tance 10 results in φ = 20/32 = 0.625, and the sec-
ond with a total distance of 16, or φ = 32/52.5 =
0.572433...

If instead, the first town is allocated different from
a square, the total distance is at least 10, and φ ≥
20/32; then n2 = n3 = n4 = n5 = n6 = 1, and an
optimal strategy can allocate the first town as a 2x2
square, with φ = 0.5. This bounds the competitive
ratio, as claimed. �

7 Conclusions

The offline problem (where all ni are given in advance)
is interesting in itself. A simple lower bound for a
guaranteed maximum is 2/3, as that is the average
distance of the whole square. For the case n1 = n2 =
1/2 we conjecture an optimum of

√
2/2, which we

could prove for the special case of divisions using a

straight line across the center. We believe the global
worst case is attained for n1 = n2 = n3 = 1/3.

Our description of the competitive factor of 1.8092
uses the assumption that there is a lower bound ε for
the input and a smallest common denominator c ≤ ε
for all input numbers. Discarding this assumption is
possible, but requires some more tedious analysis.

In principle, further improvement of the established
factors could be achieved by replacing the anlysis from
n = 16, . . . , 64 by n = 65, . . . , 256. However, the
highest known optimal φ-values are for n = 80 using
the O(n7.5) algorithm of [3], so the involved compu-
tational effort promises to be large.
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