
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Computing Popularity Maps with Graphics Hardware

Marta Fort∗ J. Antoni Sellarès∗ Nacho Valladares∗

Abstract

The popularity of a point is a measure of how many of a set
of moving objects have visited the point. The popularity
map is the subdivision of the plane into regions where all
points have the same popularity. In this paper we propose
an algorithm to efficiently compute popularity maps that
takes benefit of the Graphics Processing Unit parallelism
capabilities. We also present experimental results obtained
with the implementation of our algorithm.

1 Introduction

Mobile devices are able to generate trajectories of moving
objects (for example vehicles, people or animals), called
entities, available as points representing a position in space
in a certain instant of time. Trajectory databases, in many
cases rather large in volume, contain valuable and implicit
knowledge that needs to be extracted. Several exact and
approximate algorithms, based on computational geom-
etry techniques, to detect group movement patterns have
been proposed [8, 6, 3, 1, 7].

We are interested in the problem of detecting popular
regions among trajectories, they are places that are vis-
ited by many entities. The localization of popular regions
has multiple applications in real life. In traffic planning,
we are interested in the most congested places. In tourism
management, we want to know the locations of a historical
town which are more visited by tourist. In marketing, we
want to ensure the effectiveness of an advertisement in a
mall determining how many people have seen it. Depend-
ing on the application it is convenient to know the exact
number of times that an entity has visited the place or only
to know if it has visited the place or not. In the traffic plan-
ning example it is necessary to count the number of times
that a car has been in a place. In the tourism management
example it does not matter whether a tourist has been in
the place once or more than once, we are just interested in
how many different tourists have been there. In the mar-
keting example, both criteria could be applied.

Popular regions were first studied in [2]. The authors
present a continuous model where entire trajectories, de-
scribed by polylines whose vertices are the positions of
entities at consecutive time steps, are taken into account.
Given a setT of n trajectories withτ time steps each,r > 0
a real value andk > 0 an integer, a pointp is a (r,k)-

∗Email: {mfort,sellares,ivalladares}@ima.udg.edu. Univ.
de Girona, Spain. Partially supported by the Ministerio de Ciencia y
Innovación under grant TIN2010-20590-C02-02.

popular point if there are at leastk different trajectories of
T that intersect the squareS(p,r). The parameterr mod-
els the proximity between the point and the trajectories and
parameterk measures the point popularity. Note that the
entities do not have to be is the square simultaneously. A
(r,k)-popular region is defined as a maximal connected set
of (r,k)-popular points. It is not difficult to see that popu-
lar regions are polygons. DenotePr,k(T ) the collection of
(r,k)-popular regions. In [2] an algorithm, rather difficult
to implement, to computePr,k(T ) that takesO(τ2n2) time
and requiresO(τn +V) space, whereV denotes the total
number of vertexes ofPr,k(T ), is presented. No results
of the implementation are reported. Finally, the paper re-
marks that another natural way of defining a popular place
is by using a disk instead of a square and that more sophis-
ticated techniques are needed to handle this new problem.

In [5] authors presented algorithms, that take benefit of
the Graphics Processing Unit (GPU) parallelism capabil-
ities, to detect popular regions in the continuous model
when a diskD(p,r) of centerp and radiusr is used to de-
termine proximity instead of a square. The paper uses a
weak criterion to count intersections: a trajectory inter-
secting the diskD(p,r) multiple times counts only once.

In this paper we use astrong criterion for counting the
number of intersections: the number of intersections be-
tween a trajectoryt and the diskD(p,r) is the number of
maximal sub-trajectories oft contained inD(p,r).

t0

t1
t2

p

D(p, r)

Figure 1:The number of intersections is three for the weak cri-
terion and five for the strong criterion.

The GPU inherent parallelism and the ability to work
independently alongside the CPU as a co-processor make
it a compelling platform for computationally demanding
tasks.

In this paper, by working towards practical solutions,
we use Computational Geometry techniques together with
the GPU capabilities to detect and visualize popular re-
gions with good running times. Although our proposed
approach makes reported solutions approximated, it is ac-
ceptable since data of moving entities are also approxi-
mated. We also present and discuss experimental results
obtained with the implementation of our algorithm.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

83



27th European Workshop on Computational Geometry, 2011

1.1 Graphics pipeline and Cg

TheOpenGL graphics pipeline [9] is divided into several
stages. The input is a list of 3D geometric primitives ex-
pressed as vertexes defining points, lines, etc. with at-
tributes associated. The output is a buffer (also called
image) corresponding to a two dimensionalH ×W grid
whose cells are called pixels,H andW are the height and
width screen resolution, respectively. In the first stage of
the pipeline, per-vertex operations take place. Each in-
put vertex is transformed from 3D coordinates to window
coordinates obtaining 2D primitives. The following stage
(rasterization) rasterizes every obtained primitive accord-
ing to the screen resolution, and fragments, with their at-
tributes, are obtained. Different primitives can be pro-
jected in the same 2D space and several fragments can
belong to the same pixel position. The last stage, the
fragment stage, computes the color, alpha and depth value
of each fragment, these values determine the final output.
The color of each pixel is obtained by taking into account
all fragments corresponding to the given pixel. Finally,
the depth and stencil tests, among other tests, take place to
determine whether a fragment is painted or not. They are
executed in order and only when are enabled. Depth test
uses an internal GPU buffer called depth buffer. It is used
to discard fragments based on the comparison between the
already stored value in the(x,y) buffer position and the
incoming one, storing, on its per defect configuration, the
closest fragment.

The operations performed in the graphics pipeline con-
form a sequence of non user controlled consecutive opera-
tions. Shader languages like Cg provide the user the abil-
ity of modifying some pre-established operations, to adapt
the pipeline to the user needs by using ’shaders’, small
programs which modify the stage behavior.

2 Popularity maps

Let T be a set ofn trajectoriesT = {t0, . . . ,tn−1}. Each
trajectory ti is a sequence ofτ points in the plane,ti :
pi

0, . . . , pi
τ−1, wherepi

j denotes the position of entityei at
time j with 0≤ j ≤ τ −1. We assume a continuous model
in which the movement of an entityei from its positionpi

j

to its positionpi
j+1 is described by the straight-line seg-

ment joiningpi
j and pi

j+1, this movement is supposed to
be done in a constant speed. The trajectoryti is described
by the polyline, which may self-intersect, whose vertices
are the trajectory pointsti : pi

0, . . . , pi
τ−1.

For a given parameterr > 0, thepopularity of a point p
is the total number of intersections between the trajectories
of T and the diskD(p,r) of centerp and radiusr. The
popularity map, Mr(T ), is the partition of the plane in
maximal connected regions so that all points of a region
have the same popularity. Notice that the set of points of a
given popularity may be composed of several independent
connected regions bounded by straight-line segments and
circular arcs.

For each edgeei
j = pi

j p
i
j+1 of the polyline representing

trajectoryti we consider the offset regionOr(ei
j) obtained

sweeping alongei
j a disk of radiusr such that the center

moves onei
j. Then we definePr(ei

j) asPr(ei
j) = Or(ei

j) if
j = 0 andPr(ei

j) = Or(ei
j) \D(pi

j,r) otherwise. The pop-
ularity mapMr(T ) can be obtained from the arrangement
of regionsPr(ei

j), 0≤ j ≤ τ −1, 0≤ i ≤ n−1 (Figure 2.a).
Notice that the intersection between the regionsPr(ei

j) and
Pr(ei

j+1) determined by two consecutive edgesei
j, ei

j+1 of
trajectoryti, defines a region such that a disk centered in
any of their points and radiusr intersectsti in two maximal
subtrajectories, one contained inei

j and the other inei
j+1,

and therefore the number of intersections betweenti and
the disk is two.

To computeMr(T ) we will discretize the plane into
H ×W points such that each point corresponds to a pixel
in the graphics pipeline. The idea is to send regionsPr(ei

j)
to the GPU as a set of rectangles and disks. Inside the
pipeline all primitives will be rasterized into fragments ac-
cording to the screen resolutionH ×W . Then, we will
store the number of fragments corresponding to each pixel.
In this way we obtain the popularity of each pixel and con-
sequently a popularity map discretizationMr(T ) (Figure
2.b).

a)

H

W b)

Figure 2:a) Popularity map. b) Discretized popularity map.

The diskD(pi
j,r) is painted as a square centered atpi

j
of side 2r. Then a fragment shader is activated such that
fragments whose Euclidean distance topi

j is bigger thanr
are discarded.

2.1 Computing popularity maps

Given a value of parameterr, we could compute the pop-
ularity map under the strong criterion with a similar al-
gorithm to the one used in [5]. There, each trajectory is
painted at a different depth and the stencil buffer is used
to count the number of fragments with different depth that
correspond to each pixel. To handle the strong criterion we
should paint each trajectory edge, instead of the whole tra-
jectory, at a different depth. To avoid overflows, the stencil
buffer has to be read to CPU every 255 time steps which
is too much often. Thus we propose an alternative method
which avoids this read backs to CPU.

The idea is to paint eachPr(ei
j) with a different depth

value and via fragment shader increment, for each frag-
ment, the color value of its pixels. When allPr(ei

j) are
painted we can determine how many fragments correspond

84



EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

to each pixel depending on its final color.
Thealgorithm needs to add color to each pixel for each

fragment. Since we can not read from a texture and at
the same time write on it, we use two textures. Texture
A with the previous color of each pixel, and textureB to
store the new accumulated color. At each rendering pass
the accumulated colors ofB are copied to textureA to be
recovered for the next time step as the last color stored.

Since we have 3 channels of color (RGB) with 8 bits per
channel[0. . .255] we add 1 to the first channel for each
fragment until the red channel is overflowed. Then we in-
crement the green channel with 1 and we set the red chan-
nel to 0, adding again to red channel until it is overflowed
again. The same process is applied to the blue channel
when the green channel is overflowed. We can store up to
224 values which is more than enough in most applications.

The algorithm proceeds as follows. We paint each offset
regionOr(ei

j) at a different depth valuez = zi
j from further

(z = 1) to closer (z = 0) (Figure 3). The fragment shader
is activated during all the process not just for adding the
color values for all fragments but also to paint a disk when
needed as explained in Section 2. Since we have a depth
precision of 32 bits we can paint up to 232 time steps at
different depth levels.

t1

t0

z
1
2 = 0

z
1
1

z
1
0

z
0
2

z
0
1

z
0
0 = 1

Figure 3:Offset regions rendered from z=1 to z=0.

Notice that the disk corresponding topi
j, 1≤ j ≤ τ −2,

is painted twice, one for each trajectory edge it defines,
with different depth values. This causes the color value
to be incremented twice where it should count only once.
In addition the overlapped regions between rectangles and
disks must be avoided too. To solve this problem we add
a parameter to the shader to inform of whether the disk
fragments have to increment the color or only modify the
depth value. The shader updates the depth value but does
not increment the color when painting the first disk. When
the rectangle and the second disk are painted, both, color
and depth values are updated. This way the overlapped
fragments between the two disks and the rectangle will be
discarded by the depth test and the disks painted twice are
counted just once.

While the number of time steps is smaller than 232 and
the popularity of a point is smaller than 224 not read backs
to CPU have to be done. This turns to 0 the number of read
back from GPU in most applications.

2.2 Complexity analysis

We will use the following notation. We denote byPx the
time needed to render and colorx fragments,Ax the time
spent to makex accesses to a texture,Cx the one needed to
copyx pixels from texture to texture.

The number of painted disks for each trajectory is
O(2τ), from which,τ make accesses to texture values to
update the color. They represent 8τr2nHW painted pixels
andτ4πr2HW texture accesses. Concerning the rectan-
gles, both, the number of accesses to a texture and pix-
els painted is 2LrHW , whereL is the sum of all the tra-
jectories length. Finally the information of textureB is
copied to textureA a total ofτ times per trajectory, pro-
viding HWτn copied values. Thus, the time complexity is
O(P(8τr2n+2Lr)HW + A(n4πr2τ+2Lr)HW +CnτHW ) and no ex-
tra space is needed.

3 Popular regions

Let T be a set ofn trajectories,r > 0 be a real value and
k > 0 an integer. A pointp is a(r,k)-popular point if the
total number of intersections between the diskD(p,r) of
centerp and radiusr and the trajectories ofT is at least
k. We define a(r,k)-popular region as a maximal con-
nected set of(r,k)-popular points. A(r,k)-popular region
is bounded by straight-line segments and circular arcs. It
is not difficult to see that a(r,k)-popular region is a max-
imal connected region conformed by regions of the popu-
larity mapMr(T ) whose points have popularity at leastk.
We denotePr,k(T ) the collection of(r,k)-popular regions
(Figure 4).

R1
R2

r

R3

R4

R5

R6

R7

R8 R10

R9

r

Figure 4: Example with 3 trajectories. Points marked
with crosses are(r,2)-popular points. We havePr,2(T ) =
{R1,R2, . . . ,R10}.

A discretization ofPr,k(T ) can be easily obtained from
the discretizedMr(T ). We assign to a pixel ofPr,k(T )
value 1 if its corresponding pixel inMr(T ) has popularity
at leastk and value 0 otherwise.

3.1 Popular regions visualization

We could visualizePr,k(T ) as a binary image painting in
black, pixels whosePr,k(T ) value is 0 an in white those
with value 1. Alternatively, in order to obtain a better vi-
sual information, we can visualizePr,k(T ) from the dis-
cretizedMr(T ): pixels of Mr(T ) with value less thank

85



27th European Workshop on Computational Geometry, 2011

are painted white and the rest of pixels are painted accord-
ing to its popularity. Then, instead of having just two col-
ors, we uniformly distribute the popularity range values
among the whole RGB range (red, green and blue) (See
Figure 5.b). In particular, whenk = 1 we obtain the visu-
alization of the popularity mapMr(T ).

4 Results

Tests have been computed in a Intel Core 2 CPU 2.13GHz,
2GB RAM and a GPU NVidia GeForce GTX 480. Each
running time reported in Table 1 is the average of 10 exe-
cutions with the same parametrization.

The algorithm has been tested under different data sets.
’Animals Sim.’ is a synthetic data sets generated with Net-
logo [11] where 10.000 animals move on a terrain with no
movement restrictions interacting each other to get closer.
A total of 200,000 time steps are tracked. ’Buses’ is a set
of school buses moving in Athens metropolitan area ex-
tracted from [10] with 145 buses registered during 66,096
time steps. Finally ’State Fair’ is a daily GPS track col-
lected from the human movement in NC State Fair held in
North Carolina [4], 19 persons are tracked with a total of
5,861 time steps. Table 1 shows the running times needed
to computeMr(T ) plusPr,k(T ) and to visualizePr,k(T )
at resolutions 512×512 and 1024×1024.

Computation (s) Visualization (ms)

T r k 5122 10242 5122 10242

S
ta

te
fa

ir

2 5 0.344 0.440 3.836 12.609
5 5 0.351 0.439 3.293 10.564
10 5 0.346 0.437 2.604 8.764
5 2 0.346 0.437 2.506 8.938
5 10 0.347 0.437 4.053 12.589
5 50 0.346 0.450 6.445 21.304

B
us

es

2 5 3.401 4.469 2.507 9.241
5 5 3.399 4.470 2.315 8.864
10 5 3.400 4.408 2.249 8.716
5 2 3.402 4.465 2.217 8.588
5 10 3.398 4.474 2.457 9.179
5 50 3.401 4.585 3.078 10.661

A
ni

m
al

s
S

im
. 2 5 10.148 12.808 12.824 57.552

5 5 10.164 12.812 12.744 55.121
10 5 10.168 12.805 12.435 50.165
5 2 10.114 12.788 12.126 47.694
5 10 10.166 12.755 12.842 57.822
5 50 10.125 13.138 12.692 58.314

Table 1:Computational (in seconds) and visualization (in mil-
li seconds) times for different data sets of trajectories.

From the table we conclude that the computation and
visualization times are fairly affected byr or k. Note that
the bigger the number of time steps, the bigger the run-
ning times. This is what we expect since the number of
renders and fragment processing is directly proportional
to the number of time steps. The provided inputs, from
5,861 to 200,000 time steps, show a good scalability of
our algorithm. We can not compare our execution times
against others because, from the best of our knowledge,
no other implementations exist.

It is easy to see that the error produced by our algorithm
due to space discretization into pixels is inversely propor-
tional to the discretization size and directly proportional to
the covered area of the input data. For instance if the input
data covers a squared area of 16 Km2 the error produced
is of 3.9 meters per pixel. This is a reasonable error be-
cause GPS signals also produce similar errors. To decrease
the error we can increment the discretization size, this has
GPU hardware limitations. A possible solution is to sub-
divide the area into sub-areas and apply the algorithm for
each one increasing the discretization size.

a) b)

Figure 5: a) Buses dataset. b)Pr,k(T ) visualization. Yellow,
grey/blue and red regions means low, median and high popularity
respectively.

References

[1] M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle.
Reporting Leaders and Followers among Trajectories of
Moving Point Objects. GeoInformatica, 12(4):497–528,
2008.

[2] M. Benkert, B. Djordjevic, J. Gudmundsson, and T. Wolle.
Finding popular places.Int. Journal of Computational Ge-
ometry and Applications (IJCGA), 20(1):19–42, 2010.

[3] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle.
Reporting flock patterns. Computational Geometry,
41(3):111–125, 2008.

[4] C. Dartmouth. CRAWDAD. http://crawdad.cs.

dartmouth.edu/index.php.

[5] M. Fort, J. A. Sellarès, and N. Valladres. Computing pop-
ular places using graphics processors. InProc. SSTDM-10
in cooperation with IEEE ICDM-10, pp 233-240, 2010.

[6] J. Gudmundsson, M. J. van Kreveld, and B. Speckmann.
Efficient Detection of Patterns in 2D Trajectories of Mov-
ing Points.GeoInformatica, 11(2):195–215, 2007.

[7] J. Gudmundsson, and M. J. van Kreveld. Computing
longest duration flocks in trajectory data. In R. A. de By
and S. Nittel, editors,GIS, pages 35–42. ACM, 2006.

[8] P. Laube, M. van Kreveld, and S. Imfield. Finding REMO -
Detecting Relative Motion Patterns in Geospatial Lifelines.
Developments in Spatial Data Handling: 11th Int. Sympos.
on Spatial Data Handling, pp 201–215, 2004.

[9] M. Segal and K. Akeley. The design of the opengl graph-
ics interface. Technical report, Silicon Graphics Computer
Systems, 1994.

[10] Y. Theodoridis. R-Tree portal. http://www.

rtreeportal.org.

[11] U. Wilensky. NetLogo. http://ccl.northwestern.
edu/netlogo.

86




