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Abstract

This paper presents a new partial two-player game,
called the cannibal animal game, which is a variant of
Tic-Tac-Toe. The game is played on the infinite grid,
where in each round a player chooses and occupies free
cells. The first player Alice, who can occupy a cell in
each turn, wins if she occupies a set of cells, the union
of a subset of which is a translated or rotated copy
of a previously agreed upon polyomino P (called an
animal). The objective of the second player Bob is to
prevent Alice from creating her animal by occupying
in each round a translated or rotated copy of P . An
animal is a cannibal if Bob has a winning strategy,
and a non-cannibal otherwise. This paper presents
some new tools, such as the bounding strategy and the
punching lemma, to classify animals into cannibals
or non-cannibals. It is also shown that the pairing
strategy also works for this problem.

1 Introduction

Studying variants of the Tic-Tac-Toe game are in-
teresting problems in the area of recreational math-
ematics [1, 2, 3, 5, 6, 7, 8, 9]. Probably the most
studied among these games is an achievement game,
a somewhat generalized Tic-Tac-Toe, presented by
Harary [3, 5]. A polyomino or an animal is a set of con-
nected cells (sharing an edge) of the infinite grid. In
such games, two players Alice and Bob alternatively
occupy one cell of the infinite grid in each round of
the game, and the player who is the first to occupy
a translated copy of the given animal is a winner (we
will always assume that Alice is the first player). In
these games Bob cannot win, hence his objective is to
obstruct Alice’s achievement.

Here we present a new achievement game called the
cannibal animal game. As with Harary’s achievement
game, it is played on the infinite grid whereby players
alternate turns to occupy free cells of the grid. This
means that in each round the player must choose grid

∗Department of Computer Science, Université
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Figure 1: (a) The animal El (an L-shaped triomino),
(b) An example of the progress of the game: cells
depicted in black are occupied by Alice, and animals
depicted in gray correspond to Bob’s moves. In both
cases, the numbers on the cells represent the order in
which the cells are occupied. In the example, Alice
wins.

cells that are not yet occupied; hence, occupied re-
gions do not intersect. Moreover, once a cell is oc-
cupied, it remains so until the end of the game. In
contrast to the generalized Tic-Tac-Toe, the cannibal
animal game is a partial game: the roles and legal
moves of Alice and Bob are different. Alice’s legal
move is to occupy one cell of the infinite grid in each
round, and she wins if she occupies a translated copy
of an animal given beforehand (this move is the same
as that of the first player of Harary’s generalized Tic-
Tac-Toe). Bob’s role and allowed moves, however, are
different: in each round he must occupy a copy of the
given animal (hence occupy a subset of the grid cells),
and his objective is to prevent Alice from achieving
the animal. The animal achieved or that Bob occu-
pies may be a translation, a mirror image and/or a
90, 180, or 270-degree rotation of the given animal.
Each such translation/rotation is called a copy of the
animal and n-cell-animal is an animal consisting of n
cells. Figure 1 shows an example of the progress of the
game where the animal is El, an L-shaped triomino.

We call an animal a cannibal or a loser if Bob has
a winning strategy (Bob’s animal eats Alice’s animal)
and a non-cannibal or a winner otherwise. And hence
the game is called the cannibal animal game.

Our Results. In this paper we study the following
animals (see Figure 2 for examples): R(n,m) is an
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Figure 2: Examples of animals: R(4, 6), S(4),
O(7, 8, 2), U(6, 5, 1), and X(3) (from left to right).

nm-cell-animal of an n £ m rectangle. R(n, n) is
sometimes expressed as S(n) (or an n £ n square).
O(n,m, k) (for k < min{n/2,m/2}) is a 2k(n + m ¡
2k)-cell-animal having the shape of R(n,m) but with
a hole of (n ¡ 2k) £ (m ¡ 2k) rectangle in the center
(that is, an O-shaped polyomino whose thickness is k).
U(h,w, k) (for k < min{h,w/2}) is a k(2h + w + 2k)-
cell-animal having a U -shape with height h, width w,
and thickness k. X(n) (or n-cross) is a (2n ¡ 1)-cell-
animal consisting of vertical and horizontal cells, each
of length n, that cross each other at the center cells.

1. The following animals are cannibals:

(a) S(n) with holes if at least one of the holes is
at least bn/4c cells away from the boundary
for n ≥ 4 (and no hole is on the boundary),

(b) O(n, m, k) for n,m, k ∈ N,

(c) U(h,w, 1) for h,w ∈ N, except U(2, 4, 1).

2. The following animals are non-cannibals:

(a) Animals with at most three cells,

(b) R(n,m) for any n,m ∈ N,

(c) X(3).

2 Cannibal animals (losers) and pairing strategy

In this section we demonstrate a strategy for Bob that
prevents Alice winning for a few families of animals.
To do this, we will use the idea of pairing strategy that
is used in many other combinatorial games. In what
follows we will show that this approach also works
for our cannibal animal game. We start with a simple
strategy for Bob that works for the O(n, m, k) animal:

Theorem 1 O(n,m, k) is a cannibal for any n,m ≥ 3
and k < min{n/2, m/2}.

Proof. Bob virtually partitions the playing-board
into blocks of size (n + k) £ (m + k). That is, we
define the block Bij as the rectangle [i(n + k), (i +
1)(n + k) ¡ 1] £ [j(m + k), (j + 1)(m + k) ¡ 1] (as
shown in Figure 3). The strategy for Bob is to place
his animal inside the block where Alice played her
last move. After Alice plays, Bob checks which block
her last move belongs to; if he has already played an
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Figure 3: Winning strategy for Bob for O(n,m, k)
(in this example, for O(4, 6, 1)). Alice’s moves are
marked in black and Bob’s in gray. The numbers on
the cells represent the order in which the cells are
occupied. Since the block inside which Alice’s 4th
move is played already includes Bob’s animal, Bob’s
4th move is played in another arbitrary block.

animal in that same block, he simply plays in an arbi-
trary empty block (e.g., Bob’s 4th move in Figure 3).
Note that since the playing board is infinite, Bob can
always play these moves. With this strategy, Alice
clearly cannot construct a copy of O(n,m, k). ¤

This strategy is also useful for other animals. Recall
that by Theorem 6 squares are non-cannibals. Sur-
prisingly, the removal of a single interior cell from a
square animal can transform it into a cannibal.

Lemma 2 For any integer n ≥ 4, let A be an n £ n
square animal in which a single cell whose distance to
the boundary is at least bn/4c units has been removed.
Then A is a cannibal.

Proof. The proof is analogous to the proof of theo-
rem 1. This time we partition the board into blocks
of size (n+b(n¡1)/2c)£(n+b(n¡1)/2c). If the hole
(removed cell) is at least bn/4c units away from the
boundary, then Bob can always play his animal inside
the same block as Alice’s last move (details omitted
in this version).

Assume that Alice is able to construct a copy of the
animal on the board. By the porthole principle, there
would be a block in which Alice’s pieces form a square
of size at least dn/2e £ dn/2e (possibly with one cell
removed). However, this cannot occur since Bob also
occupies the same block with an n £ n square. ¤

In some cases, we might also need a more careful
partitioning of the grid into blocks:

Theorem 3 For any h,w ∈ N (other than (h,w) =
(2, 4)), the U(h,w, 1) animal is cannibal.

Proof. In this case, Bob virtually partitions the play-
ing board into blocks of size (w + k) £ h. But if he
arranges these blocks naively, there might be “cracks”
between Bob’s animals in which Alice could construct
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Figure 4: Examples of failed partitions.
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Figure 5: Tiling and shift size t.

her animal (see Figure 4). To avoid such cracks,
Bob must slant his partition, thus tiling the grid
with blocks with a shift of size (distance) t (Fig-
ure 5). We define the block Bi,j as the rectangle
[i(w +1)+ jt, i(w +1)+w + jt]£ [jh, jh+h¡1]. The
exact value of the slant depends on the parameters w
and h:

h = 2 (and w 6= 4): t = 2.

h ≥ 3 and 2h ¡ 2 ≥ w ≥ h ¡ 2: t = b(w + 1)/2c.

Otherwise: No slant is necessary (i.e., t = 0).

It is easy to show that with such a partition, Alice
will be unable to construct her animal (details omitted
in this version). ¤

We now introduce another idea to generate new
cannibal animals from known cannibal animals. Let
A be an animal and let C be a subset of cells of A.
Then A \C is an animal created by removing C from
A. We say that C is an outer piece if we can locate
a second copy of A \ C that covers a part of the re-
moved piece C of the first copy; we call C an inner
piece otherwise. See Figure 6.

Notice that even if C and C ′ are both inner pieces,
C ∪ C ′ may be outer. If C is an outer piece, then for
any superset C ′ of C is also outer.

Lemma 4 (Punching Lemma) Let A be a canni-
bal and let C be an inner piece of A. The animal A\C
is also a cannibal.

AC

B

D

Figure 6: A and B are inner pieces. C and D are
outer pieces since a second copy covers a part of the
piece as seen in the right examples.

Proof. Assume otherwise that A \ C is a non-
cannibal; then Alice would have a winning strategy,
i.e., she will be able to construct a copy of A\C with-
out Bob preventing it. Consider now the removed
piece C of the animal Alice constructed. Because C is
inner, this position cannot be occupied by Bob. More-
over, Alice can occupy this position in another round
to form animal A. Thus, a contradiction. ¤

Note that the reciprocal is not always true (see for
example Theorem 6 and Lemma 2). As a simple ap-
plication of this lemma, we have the following result:

Theorem 5 For any integer n ≥ 4, let S′ be an an-
imal S(n) in which any number of interior cells have
been removed. If at least one of the removed cells has
distance bn/4c or more to the boundary, then S′ is a
cannibal.

3 Non-cannibal animals (winners) and the bound-
ing strategy

In this section we give a few families of non-cannibal
animals. We first introduce a concept on common
intersection:

Definition 1 An animal P is called 2-Helly [4] if for
any family A of copies of P such that A ∩ A′ 6= ∅ for
any A,A′ ∈ A, the intersection

∩
A∈A A is nonempty.

It is easy to see that R(n,m) for any n and m is
2-Helly, while none of the other animals that we study
are.

Theorem 6 Any 2-Helly animal is a non-cannibal.

For proving this theorem, we first prove a restricted
version as follows:

Lemma 7 In any finite board, any 2-Helly animal P
is a non-cannibal provided that at least one copy P
can be occupied on the board.

Proof. At the beginning of each round we define S =
{s1, . . . , sk} as the set of copies of P not occupied by
Bob that fit in the board (note that some of these
positions may be occupied by Alice’s previous moves).
The set S will be treated as a set of potential positions
in which Alice may form her animal. Note that Bob’s
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moves must be at some s ∈ S. Also, let S ′ ⊆ S be
the set of animals that stab all elements of S (that is,
s′ ∈ S ′ ⇔ s′ ∩ s 6= ∅, ∀s ∈ S).

Note that the set S initially is nonempty at the
beginning of the game, and whenever Bob plays, the
size of S is reduced. However, notice that S will only
become empty if Bob can place his copy occupying
the cells of some s′ ∈ S ′. Hence, Alice’s strategy is
as follows: if the set S ′ is empty, Alice occupies any
empty cell of some s ∈ S. Otherwise, S ′ is a nonempty
set of animals where any two intersect. Hence, by 2-
Hellyness, there exists a cell c that intersects all the
animals of S ′. Alice will occupy c, preventing Bob
from occupying any cell of S ′.

With this strategy, Alice makes sure that the set
S never becomes empty (since Bob can never occupy
s′ ∈ S ′) and the number of Bob’s possible moves only
decreases after each of Alice’s moves. Hence after a
finite number of turns, Bob will be unable to play
inside the square and Alice will be able to complete a
copy of the animal. ¤

The result of Lemma 7 can be extended to an infi-
nite board, whereby Alice’s strategy is to construct
a bounded region big enough so that the set S is
nonempty. If she can construct such a region, she
can apply the strategy of Lemma 7 by playing only
inside this bounded region: From this idea we have
the proof of Theorem 6 as follows:

Proof of Theorem 6 (Bounding strategy). Given
P , let n and m be the smallest integers such that P
is included in R(n,m) (that is R(n,m) is the smallest
rectangle that can enclose P ). We will construct an
N £ N square region on the board large enough that
at least one copy of R(n,m) can be constructed inside
(hence so will P ). Alice can surround the boundary
of the (N + 2) £ (N + 2) square with at most 4N
moves (note that the four corners don’t need to be
occupied). Let I be the interior of the square. Notice
that at least 2(N ¡ (n ¡ 1))(N ¡ (m ¡ 1)) copies of
R(n,m). can fit inside I. Each of Bob’s animals stabs
at most (2n¡1)(2m¡1)+(n+m¡1)2 ≤ n2+m2+6nm
copies of R(n,m).

During the (at most) 4N rounds during which Alice
surrounds the boundary of the square, Bob can stab
at most 4N(n2 + m2 + 6nm) animals of S. Thus, if
2(N¡n+1)(N¡m+1) > 4N(n2+m2+6nm), the set
S will be non-empty even after Alice has completed
surrounding the boundary of the square. Because the
first term is quadratic in N and the second is linear,
for a sufficiently large N the inequality holds. ¤

Corollary 8 R(n, m) is a non-cannibal (for any
n,m ∈ N).

For some simple animals, we can construct concrete
winning strategies for Alice as follows (For space lim-

itation, their proofs are omitted.):

Lemma 9 For S(n) and X(3), Alice can win by at
most n2 + 3 and 8 moves, respectively.

4 Concluding remarks

In Harary’s generalized tic-tac-toe, some monotone
properties hold; these properties include “increasing
the size of the board helps Alice” and “increasing the
animal helps Bob.” However, such properties do not
hold for the cannibal animal game, making it deeper
and more interesting. We also note that the cannibal
property of many other animals is still left unsolved.
Among them is the U(2, 4, 1) animal, which we conjec-
ture to be a cannibal, and the squares S(n) in which
a cell less than bn/4c units away from the boundary
has been removed. On the other hand, it is easy to
see that any animal consisting of at most 3 cells is
a non-cannibal. We conjecture that all 4-cell-animals
are also non-cannibals, and consequently, the 5-cell-
animal U(2, 3, 1) would be the smallest cannibal.
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