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Covering and Piercing Disks with Two Centers∗

Hee-Kap Ahn† Christian Knauer‡ Sang-Sub Kim† Lena Schlipf§ Hyeon-Suk Na¶

Chan-Su Shin‖ Antoine Vigneron ∗∗

Abstract

We consider some variations of the two center prob-
lem. Let D denote a set of disks in the plane. We first
study the problem of finding two smallest congruent
disks such that each disk in D is intersected by one of
these disks. Then we study the problem of covering
the set D by two smallest congruent disks.

1 Introduction

There has been a fair amount of works on the two
center problem for points: Given a set P of n points in
the plane, find two smallest congruent disks that cover
all points in P . So far, the best known algorithms
run in O(n log2 n log2 log n) worst-case time [1] and in
O(n log2 n) expected time [4].

In this paper we consider two versions of the prob-
lem where the input consists of disks instead of points,
so called intersecting and covering problems: Given
a set D of n disks, compute two smallest congruent
disks C1 and C2 such that each D ∈ D is intersected
by C1 or C2 for the intersecting problem or is con-
tained by the union of C1 and C2 for the covering
problem.

The intersecting problem can be also formulated
as a piercing problem: Compute the smallest value δ
such that increasing the radius of every disk in D by δ
makes the set pierceable by two points, meaning that
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there exist two points such that each disk contains at
least one of the points. We present a simple O(n3) al-
gorithm for this problem and algorithms which run in
O(n2 log3 n) expected time and O(n2 log4 n log logn)
time in the worst case.

The covering problems has also two different cases:
In the restricted case each disk D ∈ D has to be fully
covered by one of the disks C1 or C2. In the general
case a disk D ∈ D can be covered by the union of
C1 and C2. We show how the algorithms for the in-
tersecting problem can be used to solve the restricted
covering case. We complement these results by giving
efficient approximation algorithms for the restricted
and the general covering cases.

2 Preliminaries

The radius of a disks D is denoted by r(D) and its
center by c(D). The distance between two disks D1

and D2 is denoted by d(D1, D2) and is defined as
d(D1, D2) = d(c(D1), c(D2)) + r(D1) + r(D2).

3 Intersecting Disks with Two Disks

Given a set of disks D = {D1, . . . , Dn}, we want to
find two smallest congruent disks C1 and C2 such that
for every disk Di ∈ D, Di has a nonempty intersec-
tion with C1 or C2. Based on the observation below,
we can design an algorithm that finds the optimal so-
lution in O(n3) time.

Observation 1 Let ` be the bisector of an optimal
solution C1 and C2. Then, Ci ∩D 6= ∅ for any D ∈ D
whose center lies in the same side of the center of Ci,
for i = {1, 2}.

For every bipartition of the centers of the disks in D,
we solve the 1-center problem for the disks in each
partition. Then the center with larger radius is the
solution for the 2-center problem restricted to the bi-
partition. We return the best one over all bipartitions.
Since there are O(n2) such bipartitions and each 1-
center problem can be solved in linear time [7], this
algorithm runs in time O(n3).

To improve the time complexity, we formulate the
problem in a different way as follows. For a real num-
ber δ, a δ-inflated disk of a disk Di, denoted by Di(δ),
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is a disk concentric to Di with radius r(Di) + δ. Con-
sider the following decision problem:

Given a value δ, do there exist two points,
p1 and p2, in the plane such that Di(δ) ∩
{p1, p2} 6= ∅ for every Di ∈ D.

We let δ∗ be the minimum value for which the decision
problem answers “yes”. To ensure that the radius of
δ-inflated disks is nonnegative, we require that δ ≥
−rmin, where rmin be the minimum of radii of all disks
in D. Without loss of generality, we also assume that
no disk contains another disk in its closure, and that
at most three δ-inflated disks intersect at a point (on
their boundaries) for all disks in D.

3.1 A decision algorithm

Given a value δ, we construct the arrangement of n δ-
inflated disks in the plane. The arrangement consists
of O(n2) cells. We traverse cells in the arrangement
in depth-first manner and do the followings: We place
one center point, say p1, in a cell. The algorithm
returns “yes” if all the disks that do not contain p1
have a nonempty common intersection. Otherwise,
we move p1 to a neighboring cell, and repeat the test
until we visit every cell. To test all cells in a naive
way leads to a running time of O(n3).

To do the test efficiently, we partition the disks into
O(
√
n) subsets with respect to their indices such that

the first subset D1 consists of the first d
√
ne disks

D1, · · · , Dd√ne and D2 consists of the following d
√
ne

disks, and so on. For each subset Di, we maintain a
data structure representing the common intersection
Ii =

⋂
p6∈D,D∈Di

D, of the disks in the set that do not
contain p in its closure.

When we move p to a neighboring cell, at most
one disk changes its status - therefore we update the
common intersection of the corresponding group only,
and this can be done in O(

√
n log n) time. If ev-

ery Ii is nonempty, we decide whether they have a
nonempty common intersection or not in O(

√
n log n)

expected time using the randomized convex program-
ming [3, 10] or in O(

√
n log2 n) time using the de-

terministic convex programming [2]. Therefore the
algorithm takes O(n2.5 log2 n) time in total.

We can improve the time complexity further to
O(n2 log2 n log log n) time or O(n2 log2 n) expected
time by representing a traversal of cells as a set of
intervals along a time line of the traversal, storing the
set in segment trees, and checking the emptiness of
the disk intersection in each cell with a help of the
segment trees in O(log2 n) expected time [3, 10] or
O(log2 n log logn) worst-case time [2]. Details will be
found in the full version of the paper.

Lemma 1 Given a value δ, we can decide in
O(n2 log2 n log log n) time or in O(n2 log2 n) expected
time whether there exist two points such that every
δ-inflated disk is intersected by at least one of them.

Note that the decision algorithm returns two solu-
tion points if the answer is “yes”.

3.2 Finding δ∗

Lemma 2 When δ = δ∗, either p1 or p2 is a common
boundary point of three δ∗-inflated disks, a tangent
point of two δ∗-inflated disks or a δ∗-inflated disk with
radius zero.

Thus, we consider only discrete values of δ for which
one of the events defined in Lemma 2 occurs. If p1
or p2 is a δ-inflated disk with zero radius, that is,
δ = −rmin, we can test whether the common intersec-
tion of the remaining δ-inflated disks is empty or not
in O(n) time. If p1 or p2 is a tangent point of two
inflated disks, then we can collect such O(n2) tangent
points (also associated radii) from all pairs of disks,
and perform the binary search over the sorted radii
by decision algorithm in Lemma 1 in O(n2 log3 n) ex-
pected time or O(n2 log3 n log logn) worst-case time.
So from now on, we assume without loss of general-
ity that p1 is an intersection point of three δ-inflated
disks.

For this case, we construct a frustum fi ∈ R3 for
each disk Di ∈ D. The bottom base of the frustum
fi is Di(−rmin) lying in the plane z = −rmin. The
intersection of fi and the plane z = δ is Di(δ). The
top base of fi is Di(δmax), where δmax is the radius of
the smallest disk intersecting all disks in D. Clearly,
the optimal value of δ is in [−rmin, δmax].

Let p = (x, y) be the intersection point of the disks
Di(δ), Dj(δ), and Dk(δ). Then the point p′ = (x, y, δ)
is the intersection point of three frustums fi, fj , and
fk. Thus, p1 is the projection of a point p′ which is
an intersection point of three frustums, i.e., a vertex
of the arrangement A of the n frustums f1, . . . fn; the
complexity of A is O(n3). Note that for each can-
didate for p1, the corresponding value for δ is easily
obtained, namely the height of p′1. Since A contains
O(n3) vertices, we need to compute them implicity.

Implicit binary search We now describe how to
perform the binary search over the vertices of A in
an implicitly way:

Binary search on a coarse list of vertices. We
first randomly select O(n2 log n) vertices from A
by picking O(n2 log n) triples of frustums, and sort
the radii associated with them in O(n2 log2 n) time.
By a binary search with the decision algorithm in
Lemma 1, we determine two consecutive radii δi
and δi+1 such that δ∗ is between δi and δi+1. This
takes O(n2 log3 n) time. Since the vertices were
picked randomly, the strip W [δi, δi+1] bounded by
the two planes z := δi and z := δi+1 contains only
O(n) vertices of A with high probability [9, Section 5].
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Zooming into the interval. We compute all the k
vertices in W [δi, δi+1] by a standard sweep-plane al-
gorithm in O(k log n+n2 log n) time as follows: First,
we compute the intersection of the sweeping plane at
z := δi with the frustums f1, . . . fn. This intersection
forms a two-dimensional arrangement of O(n) circles
with O(n2) total complexity, and we can compute it in
O(n2 log n) time. We next construct the portion of the
arrangement A in W [δi, δi+1] incrementally by sweep-
ing a vertical plane from the intersection at z := δi
towards z := δi+1. As a result, we can compute the
k = O(n) vertices (and the corresponding O(n) radii)
in W [δi, δi+1] in O(n log n) time. We abort the sweep
if the number k of vertices inside the strip becomes
too large and restart the algorithm with a new ran-
dom sample. This happens only with small proba-
bility. In order to find the minimum value δ∗, we
perform a binary search on these O(n) radii we just
computed, using the decision algorithm in Lemma 1.
This takes O(n2 log3 n) expected time. The solution
pair of points p1 and p2 can also be found by the de-
cision algorithm.

To get a deterministic algorithm, we use the para-
metric search technique with deterministic decision
algorithm in Lemma 1, but the running time in-
creases by one (log n)-factor, so the total time be-
comes O(n2 log4 n log logn) time. Details can be
found in the full version of this paper.

Theorem 3 Given a set D of n disks in the plane,
we can compute two smallest congruent disks whose
union intersects every disk in D in O(n2 log3 n) ex-
pected time or in O(n2 log4 n log log n) worst-case
time.

4 Covering Disks with Two Disks

Given a set of disks D = {D1, . . . , Dn} in the plane,
we want to find two smallest congruent disks C1 and
C2, such that every disk Di ∈ D is covered by C1 or
C2. As mentioned in the introduction, we distinguish
between two cases: The restricted case where each
disk Di has to be fully covered by C1 or C2 and the
general case where a disk Di can be covered by C1 ∪
C2.

4.1 The Restricted Case

Observation 2 Let ` be the bisector of an optimal
solution C1 and C2. Then, D ⊂ Ci for every D ∈ D
whose center lies in the same side of the center of Ci,
for i = {1, 2}.

Hence, the restricted covering case can be solved in
O(n3) time, since the smallest disk covering a set of
disks can be computed in linear time [8] and there are
O(n2) bipartitions of the centers of the disks.

The algorithm from Section 3 can be also be used to
solve this problem. For this we consider the decision
problem: Given a set of n disks D and a value δ, do
there exist two disks C1, C2 with radius δ, such that
each disk Di ∈ D is covered by either C1 or C2. This
implies that for each disk Dj ∈ D covered by Ci holds:
d(c(Dj), c(Ci)) + r(Dj) ≤ δ, for i = {1, 2}. It clearly
holds that δ ≥ rmax, where rmax is the maximum of
radii of all disks in D. We can formulated the problem
in a different way.

Given a value δ, do there exist two points, p1
and p2, such that D∗i (δ)∩{p1, p2} 6= ∅ for ev-
ery Di ∈ D, where D∗i (δ) is a disk concentric
to Di and whose radius is δ − r(Di) ≥ 0.

Since δ ≥ rmax, we add an initialization step, in which
every disk Di is replaced by a disk concentric to Di

with radius rmax − r(Di). Then we can use the algo-
rithm from Section 3 in order to solve the restricted
covering problem.

Theorem 4 Given a set of n disks D in the plane,
we can compute two smallest congruent disks such
that each disk in D is covered by one of the disks in
O(n2 log3 n) expected time or in O(n2 log4 n log logn)
worst-case time.

Constant factor approximation Algorithm 1 com-
putes a 2/

√
3-approximation in O(n log n) time.

OneCover(U), which is used as a subroutine, com-
putes the smallest disk covering a set of disks U .
Algorithm 1 runs in O(n log n) time, since the di-

Algorithm 1

1: U1 = ∅ and U2 = ∅.
2: Compute the diametral pair D1 and D2, that is,

d(D1, D2) is the diameter of D.
3: U1 = U1 ∪ {D1} and U2 = U2 ∪ {D2}.
4: for all Di ∈ D do
5: if d(Di, D1) < d(Di, D2) then
6: U1 = U1 ∪ {Di}
7: else
8: U2 = U2 ∪ {Di}
9: Compute C1 =OneCover(U1) and C2 =OneCover(U2)

10: return C1 and C2

ameter of D can be computed in O(n log n) [7] and
OneCover(U) in linear time [8]. The approximation
factor of 2/

√
3 can be proven by making a case dis-

tinction whether D1 and D2 are covered by the same
disk in the optimal solution or by different disks, and
by using Jung’s theorem [5].

At the expense of increasing the approximation fac-
tor by a factor of

√
2, we can improve the running

time to O(n) by replacing the computation of the di-
ameter of D in Algorithm 1 by computing a 1/

√
2-

approximation of the diameter in O(n) time.
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Theorem 5 Given a set of n disks D. For the
restricted covering case a 2/

√
3-approximation can

be computed in O(n log n) time and a 2
√

2/
√

3-
approximation in O(n) time.

(1 + ε)-approximation Recall Observation 2.
We show how to compute an optimal solution in
O(n log n) time if the orientation of the bisector is
given and explain how this algorithm is used in order
to obtain a (1 + ε) approximation.

Fixed Orientation. W.l.o.g, assume that the
bisector is vertical. After sorting the centers of all
Di ∈ D by their x-values, we sweep a vertical line
` from left to right, and maintain two sets D1 and
D2: D1 contains all disks whose centers lie to the left
of ` and D2 = D \ D1. Let C1 be the smallest disk
covering D1 and C2 the smallest disk covering D2.
While sweeping ` from left to right, the radius of C1

is nondecreasing and the radius of C2 nonincreasing
and we want to compute min max(r(C1), r(C2)).
Hence, we can perform a binary search on the list
of all centers. Each step takes O(n) time, thus we
achieve a total running time of O(n log n).

Sampling. We use 2π/ε sample orientations chosen
regularly over 2π, and compute for each orientation
the solution in O(n log n) time. The approximation
factor can be proven by showing that there is a sam-
ple orientation that makes angle at most ε with the
optimal bisector. The solution for this line is at most
(1 + ε) times the optimal solution.

Theorem 6 Given a set D of n disks in the plane,
a (1 + ε) approximation for the restricted covering
problem for D can be computed in O(n log n/ε) time.

4.2 The General Case

Lemma 7 A solution for the restricted case is a
(
√

2 + 1)/2-approximation for the general case.

Theorem 8 Given a set D of n disks, a (
√

2+1)/
√

3-
approximation for the general covering problem for
D can be computed in O(n log n) time and a (2 +√

2)/
√

3-approximation in O(n) time.

(1 + ε)-Approximation First, we compute a (2 +√
2)/
√

3-approximation for the general covering case
in O(n) time as explained before. Let Capx

1 ,
Capx

2 be the solution disks. We can assume that
d(c(Capx

1 ), c(Capx
2 )) ≤ (2 + 2(2 +

√
2)/
√

3)r(Capx
1 ) <

6r(Capx
1 ), otherwise Capx

1 , Capx
2 are already an opti-

mal solution. We compute a smallest bounding box B
of Capx

1 ∪Capx
2 and an O(1/ε)×O(1/ε) grid on B. The

length of each grid cell is < 6εr(Capx
1 ) < 12εr∗, where

r∗ is the radius of the optimal solution disks. Each

disk is replaced in O(n/ε) time by the grid points
which are closest to its boundary and lie inside the
disk. If a disk has no grid point lying inside, it is re-
placed by the grid point which is closest to this disk.
In total we have a set of O(1/ε2) points for which we
solve the two center problem, meaning we compute
the smallest two disks E1, E2 that cover this point
set in O( 1

ε2 log2 1
ε log2 log 1

ε ) time [1]. It holds that
r(E1) = r(E2) ≤ r∗ and if the radii of E1, E2 are
increased by the length of the diagonal of a grid cell,
which is < 6ε

√
2r(Capx

1 ), these disks cover D and their
radii are < r∗(1 + 12

√
2ε). The total running time is

O( 1
ε2 log2 1

ε log2 log 1
ε + n

ε ).
In order to improve the running time for very small

ε, i.e., ε ≤ 1/ log n, we compute the set of grid points
from the union of the disks in D. The union can
be computed in O(n log n) time and its complexity is
O(n) [6]. Hence, the replacement of the disks by grid
points takes O(n log n+ 1/ε2) time.

Theorem 9 Given a set D of n disks in the plane,
a (1 + ε)-approximation for D in the general cover-
ing case can be computed in O( 1

ε2 log2 1
ε log2 log 1

ε +
min{nε , n log n}) time.
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