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Two-Site Voronoi Diagrams under Geometric Distance Functions

Gill Barequet∗ Matthew T. Dickerson† David Eppstein‡ David Hodorkovsky§ Kira Vyatkina¶

Abstract

We revisit a new type of a Voronoi diagram, in which
distance is measured from a point to a pair of points.
We consider a few more such distance functions, and
analyze the structure and complexity of the nearest-
and furthest-neighbor Voronoi diagrams of a point set
with respect to these distance functions.

1 Introduction

The Voronoi diagram is a beautiful geometric struc-
ture, which has a wide variety of applications in the
most diverse areas. Detailed surveys of its history, ap-
plications, and variants are given by Aurenhammer [4]
and by Okabe, Boots, and Sugihara [11]. One of the
recent generalizations of this concept is a family of so-
called 2-site Voronoi diagrams [5], which are based on
distance functions that define a distance from a point
in the plane to a pair of sites from a given set S.
Consequently, each Voronoi region corresponds to an
(unordered) pair of sites from S.

For S being a set of points, Voronoi diagrams under
a number of 2-site distance functions have been in-
vestigated, which include arithmetic combinations of
point-to-point distances [5, 13] and certain geometric
distance functions [5, 7, 8]. In this work, we develop
further the latter direction.

Let S ⊂ R2, and consider p, q ∈ S and a point v
in the plane. We shall focus our attention on a few
circle-based distance functions:

• radius of circumscribing circle:
C(v, (p, q)) = Rad(◦(v, p, q)), where ◦(v, p, q) is
the circle defined by v, p, q,

• radius of containing circle:
K(v, (p, q)) = Rad(C(v, p, q)), where C(v, p, q) is
the minimum circle containing v, p, q,
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• view angle:
V(v, (p, q)) = ]pvq, or, equivalently, half of the
angular measure of the arc of ◦(v, p, q) that the
angle ]pvq subtends,

and on a parameterized perimeter distance function:

• parameterized perimeter :
Pc(v, (p, q)) = |vp|+ |vq|+ c · |pq|, where c ≥ −1.

The first and the third circle-based distance functions
were first mentioned in [9]. The last function gener-
alizes the perimeter distance function P(v, (p, q)) =
Per(4(v, p, q) introduced in [5], and later addressed
in [7, 8].

Since two points define a segment, any 2-point
site distance function d(v, (p, q)) provides a distance
between the point v and the segment pq, and vice
versa. Consequently, geometric structures akin to 2-
site Voronoi diagrams can arise as Voronoi diagrams
of segments. This alternative approach was indepen-
dently undertaken by Asano et al., and the “view
angle” and the “radius of circumscribing circle” dis-
tance functions reappeared in their works [2, 3] on
Voronoi diagrams for segments soon after they had
been proposed by Hodorkovsky [9] in the context of
2-site Voronoi diagrams. However, as Asano’s et al.
research was originally motivated by mesh generation
and improvement tasks, they were mostly interested
in sets of segments representing edges of a simple poly-
gon, and thus, non-intersecting (except, possibly, at
the endpoints), what significantly alters the essence
of the problem.

In this paper, we analyze the structure and com-
plexity of 2-site Voronoi diagrams under the dis-
tance functions listed above. Our obtained results are
mostly of theoretical interest. The method used to de-
rive an upper bound on the complexity of the 2-site
Voronoi diagram under the “parameterized perime-
ter” distance function is first developed for the case of
c = 1, yielding a much simpler proof for the “perime-
ter” function than the one developed in [8], and then
generalized to any c ≥ 0.

Throughout the paper we use the notation V
(n)
F (S)

(resp., V
(f)
F (S)) for denoting the nearest- (resp.,

furthest-) 2-site Voronoi diagram, under the distance
function F , of a point set S. The set S is always
assumed to contain n points.

2 Circumscribing Circle

Let ◦(p, q, r) denote the unique circle defined by three
distinct points p, q, and r in the plane.
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Definition 1 Given two points p, q, the “circumcir-
cle distance” C from a point v to the unordered pair
(p, q) is defined as C(v, (p, q)) = Rad(◦(v, p, q)).

For a fixed pair of points p, q, the curve C(v, (p, q)) =
∞ is the line pq. This implies that all the points on
pq belong to the region of (p, q) in V

(f)
C (S). In this

section we assume that the points in S are in gen-
eral position, i.e., there are no three collinear points,
and no three pairs of points define three distinct lines
that intersect at one point. The given sites are sin-
gular points, i.e., for any two sites p, q, the function
C(v, (p, q)) is not defined at v = p or v = q.

Theorem 1 Let S be a set of n points. The com-

plexity of V
(f)
C (S) is Ω(n4).

Proof. The n points define Θ(n2) lines with Θ(n4)
intersection points. All these intersection points are
features of V

(f)
C (S), and hence the lower bound. ¤

Theorem 2 Let S be a set of n points. The com-

plexity of both V
(n)
C (S) and V

(f)
C (S) is O(n4+ε) (for

any ε > 0).

Proof. The complexity of V
(n|f)
C (S) is identical to

that of the respective diagram of C2(v, (p, q)) =
Rad2(◦(v, p, q)). It is known that Rad2(◦(v, p, q)) =
((|vp||vq||pq|)/(4|4vpq|))2 = (((vx − px)2 + (vy −
py)2)((vx − qx)2 + (vy − qy)2)((px − qx)2 + (py −
qy)2))/(4(vx(py − qy) − px(vy − qy) + qx(vy − py))2).
The respective collection of Θ(n2) Voronoi surfaces
fulfills Assumptions 7.1 of [12, p. 188]: (1) Each sur-
face is an algebraic surface of maximum constant de-
gree; (2) Each surface is totally defined (stronger than
needed); and (3) Each triple of surfaces intersects
in O(1) points. Hence, we may apply Theorem 7.7
of [ibid., p. 191] and obtain the claimed bound. ¤

3 Containing Circle

Let C(p, q, r) denote the minimum-radius circle con-
taining three points p, q, r.

Definition 2 Given two points p, q, the “containing-
circle distance” K from a point v to the unordered
pair (p, q) is defined as K(v, (p, q)) = Rad(C(v, p, q)).

In our context p 6= q. Assume first that v 6= p, q.
Observe that if all angles of 4pqr are acute (or
4pqr is right-angled), then C(p, q, r) is identical to
◦(p, q, r). Otherwise, if one of the angles of 4pqr is
obtuse, then C(p, q, r) is the circle whose diameter is
the longest edge of 4pqr. If v coincides with either
p or q, C(v, p, q) is the circle whose diameter is the
segment pq.

Theorem 3 Let S be a set of n points. The com-

plexity of V
(n)
K (S) is Ω(n).
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(a) Acute triangle (b) Obtuse v (c) Obtuse q

Figure 1: If p, q have a non-empty region in V
(n)
K (S),

then pq is an edge in DT(S)

Proof. For simplicity assume that each point from S
has a unique closest neighbor in S. For each p ∈ S,
consider its closest neighbor q. Then, the points of
pq lying sufficiently close to p belong to the region
of (p, q) in V

(n)
K (S), which is thus non-empty. Since

no region is thereby encountered more than twice,
V

(n)
K (S) has at least dn/2e non-empty regions. ¤

Theorem 4 Let S be a set of n points. The com-

plexity of V
(n)
K (S) is O(n2+ε) (for any ε > 0).

Proof. Let a point v belong to a non-empty region of
(p, q). No matter if 4vpq is acute (Fig. 1(a)), 4vpq is
obtuse with v the obtuse vertex (Fig. 1(b)), or 4vpq
is obtuse with p or q the obtuse vertex (Fig. 1(c)),
C(v, p, q) cannot contain any other point x ∈ S. Oth-
erwise, regardless of the location of x in C(v, p, q), we
will always have K(v, (p, q)) > K(v, (x, q)), a contra-
diction. This follows from the fact [6, Lemma 4.14]
that given a point set K and its minimum enclosing
circle C, removing from K one of the (two or three)
points defining C will reduce the radius of the min-
imum enclosing circle. Thus, there is a circle con-
taining p, q that is empty of any other point of S.
Therefore, pq is a Delaunay edge of S. Thus, there
are O(n) pairs of sites in S that have non-empty re-
gions in V

(n)
K (S). Furthermore, the Voronoi surface of

(p, q) is made of a constant number of patches, each of
which is “well-behaved” in the sense discussed above.
Again, the complexity of the lower envelope of these
O(n) surfaces is O(n2+ε) (for any ε > 0). ¤

Theorem 5 Let S be a set of n points. The com-

plexity of V
(f)
K (S) is O(n4+ε) (for any ε > 0).

Proof. Again, we prove the claim via the upper en-
velope of Θ(n2) “well-behaved” Voronoi surfaces. ¤

4 View Angle

Definition 3 Given two points p, q, the “view-angle
distance” V from a point v to the unordered pair (p, q)
is defined as V(v, (p, q)) = ]pvq.

Similarly to C, the view-angle function is undefined
at the given points. For fixed points p, q, the curve
V(v, (p, q)) = π is the open segment pq, while the
curve V(v, (p, q)) = 0 is the line pq excluding the
closed segment pq. The curve V(v, (p, q)) = π/2 is
the circle with diameter pq (excluding p and q).
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Figure 2: The graph of V
(n)
V (S)

Theorem 6 Let S be a set of n points. The com-

plexity of V
(n)
V (S) is Ω(n4).

Proof. Let S be a set of n points. Intersections of
the complements of two segments defined by two pairs
of points (w.r.t. the supporting lines, Fig. 2(a)) are
features of V

(n)
V (S). Create a geometric graph G on

the given points, in which each segment’s complement
defines two edges. Add one additional point far away
from the convex hull of S, and connect it (without in-
tersections) to all the rays (Fig. 2(b)). We can now use
the crossing-number lemma for bounding the number
of intersections. The lemma tells us that every draw-
ing of a graph with n vertices and m ≥ 4n edges
(without self or parallel edges) has Ω(m3/n2) cross-
ing points [1, 10]. In our case m = n(n − 1), so the
number of intersection points in G is Ω(n4). ¤

Theorem 7 Let S be a set of n points. The com-

plexity of both V
(n|f)
V (S) is O(n4+ε) (for any ε > 0).

Proof. For analyzing V
(n|f)
V (S) consider the function

(− cos ]pvq) instead of ]pvq. This is allowable since
cos(·) is strictly decreasing in [0, π]. By the cosine law,
− cos]pvq = (|pq|2−|vp|2−|vq|2)/(2|vp||vq|). Hence,
the Θ(n2) Voronoi surfaces fulfill Assumptions 7.1
of [12, p. 188]. As above, apply Theorem 7.7 of [ibid.,
p. 191] to obtain the claimed bound. ¤

Theorem 8 Let S be a set of n points. The com-

plexity of V
(f)
V (S) is Ω(n4).

Proof. Given a set S of n points, we count the inter-
sections of pairs of line segments defined by pairs of
points of S (Fig. 3(a)). Create a geometric graph on
the points of S, in which edges are the line segments
connecting pairs of points (Fig. 3(b)). The intersec-
tions of segments defined by all pairs of points define
features of V

(f)
V (S), since along these segments the

view-angle function assumes its maximum possible
value, π. We can now use the crossing-number lemma
for counting these intersections. The graph with n
vertices and m ≥ 4n edges (without self or parallel
edges) has Ω(m3/n2) crossing points [1, 10]. In this
case m = n(n− 1)/2, hence the claimed bound. ¤

Results by Asano et al. [2] imply that the edges of
V

(n|f)
V (S) are pieces of polynomial curves of degree at
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Figure 3: The graph of V
(f)
V (S)

most 3. However, the structure of the part of V
(f)
V (S)

that lies outside the convex hull CH(S) of S is fairly
simple: it is given by the arrangement of lines sup-
porting the edges of CH(S). This arrangement can
be computed by a standard incremental algorithm in
optimal Θ(k2) time and space, where k is the number
of vertices of CH(S). Each cell of the arrangement
should then be labeled with a pair of sites from S, to
the Voronoi region of which it belongs; this extra task
can be completed within the same complexity bounds.

5 Parameterized Perimeter

Definition 4 Given two points p, q and a real con-
stant c ≥ −1, the “parameterized perimeter distance”
Pc from a point v to the unordered pair (p, q) is de-
fined as Pc(v, (p, q)) = |vp|+ |vq|+ c · |pq|.

We require that c ≥ −1, since allowing c < −1
would result in negative distances. Letting c = −1
results in a distance function that equals 0 for all
the points on the segment pq. If c = 0, we deal
with a “sum of distances” distance function intro-
duced in [5] and recently revisited in [13]. For c = 1,
the above definition yields the “perimeter” distance
function P(v, (p, q)) = Per(4vpq).

It was proven [8] that the complexity of the 2-site
perimeter Voronoi diagram of n points is O(n2+ε).
The key observation was that any pair of sites that has
a non-empty region in the perimeter diagram also has
a non-empty region in the sum-of-distances diagram.
Consequently, the number of such pairs is linear in n.
Again, one applies the Davenport-Schinzel machinery
and conclude the claimed upper bound on the com-
plexity of the diagram. We provide here an alterna-
tive and much simpler proof of the same bound, which
generalizes to the case of “parameterized perimeter”
distance function for any c ≥ 0.

Theorem 9 Let S be a set of n points. The com-

plexity of V
(n)
P (S) is O(n2+ε) (for any ε > 0).

Proof. Refer to Fig. 4. Let p, q ∈ S be two sites
which have a non-empty region in V

(n)
P (S), and let v

be a point in this region. In addition, let ` be the
perpendicular bisector of the segment pq. Assume,
w.l.o.g., that |vp| ≤ |vq|.

Consider the ellipse Ovpq passing through q with v
and p as foci. By definition, for any point s inside this
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Figure 4: An empty circle containing sites in P

ellipse we have |vs|+ |ps| < |vq|+ |pq|. Therefore,

P(v, (p, s)) = |vs|+ |ps|+ |vp| (1)
< |vq|+ |pq|+ |vp| = P(v, (p, q)).

Hence, s 6∈ S, otherwise v would belong to the region
of (p, s) instead of that of (p, q). Therefore, Ovpq is
empty of any sites other than p and q.

Now consider the line `′ that is tangent to Ovpq at q,
and the ray ~r perpendicular to `′ at q and passing
through Ovpq. It is a known property of ellipses that
this ray bisects the angle ]vqp, thus, it intersects the
segment vp, say, at point o. The circle C centered at o
and passing through q is tangent to Ovpq at q (as well
as at another point), and is entirely contained in Ovpq.
Since |vp| ≤ |vq|, it follows that C also contains p. (If
p were on the extension of vp in the shaded area, a
contradiction would easily be obtained by using the
triangle inequality: |op| > |oq|, hence |vp| = |ov| +
|op| > |ov|+|oq| > |vq|, a contradiction to |vp| ≤ |vq|.)
Since Ovpq is empty of sites (except p, q), so is C.
Therefore, pq is an edge of the Delaunay triangulation
of S. The number of such edges is linear in n. Hence,
there are Θ(n) respective surfaces of these pairs of
sites. One can now apply the standard Davenport-
Schinzel machinery, and the claim follows. ¤

Finally, we state the following theorem.

Theorem 10 Let S be a set of n points.

(a) The complexity of V
(n)
P−1

(S) is Ω(n4) and O(n4+ε)
(for any ε > 0).
(b) If there is a unique closest pair p, q ∈ S, then when

c →∞, the complexity of V
(n)
Pc

(S) is asymptotically 1.

(c) For c ≥ 0, the complexity of V
(n)
Pc

(S) is O(n2+ε)
(for any ε > 0).

The easy proofs of Theorems 10(a,b), as well as the
proof of Theorem 10(c) (which is a nontrivial gener-
alization of the proof of the special case c = 1), are
provided in the full version of the paper.

6 Conclusion

In this paper, we have investigated 2-site Voronoi di-
agrams of point sets with respect to a few geometric
distance functions. The Voronoi structures obtained

in this way cannot be explained in terms of the previ-
ously known kinds of Voronoi diagrams (which is the
case for the 2-site distance functions thoroughly ana-
lyzed in [5]), what makes them particularly interest-
ing. On the other hand, our results can be exploited
to advance research on Voronoi diagram for segments.
Potential directions for future work include consider-
ation of other distance functions, and generalizations
to higher dimensions and to k-site Voronoi diagrams.
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