
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Coloring Planar Homothets and Three-Dimensional Hypergraphs
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Abstract

We prove that every set of homothetic copies of a
given convex body in the plane can be colored with
four colors so that any point covered by at least two
copies is covered by two copies with distinct colors.
This generalizes a previous result from Smorodin-
sky [8]. We also show a relation between our proof
and Schnyder’s characterization of planar graphs. Us-
ing this characterization we generalize the first result
and show that k ≥ 2, every three-dimensional hyper-
graph can be colored with 6(k−1) colors so that every
hyperedge e contains min{|e|, k} vertices with mutu-
ally distinct colors. Furthermore, we also show that
at least 2k colors might be necessary. This refines a
previous result from Aloupis et al. [1].

1 Introduction

The well-known graph coloring problem has sev-
eral natural generalizations to set systems, or hyper-
graphs. A proper coloring of a hypergraph can be
defined such that no hyperedge is monochromatic, or
such that every hyperedge contains some minimum
number of distinct colors, for instance. A rich liter-
ature exists on these topics; in particular, the two-
colorability of hypergraphs (also known as property
B), has been well-studied since the sixties [4].

In this paper, we concentrate on coloring geometric
hypergraphs, defined by simple objects in the plane.
Those hypergraphs serve as models for wireless sen-
sor networks, and associated coloring problems have
been investigated recently. Smorodinsky [8] investi-
gated the chromatic number of such geometric hyper-
graphs, defined as the minimum number of colors re-
quired to make every hyperedge non-monochromatic.
He considered hypergraphs induced by a collection S
of regions in the plane, whose vertex set is S, and the
hyperedges are all subsets S′ ⊆ S for which there ex-
ists a point p such that S′ = {R ∈ S : p ∈ R} (i.e.,
the regions that contain p). He proved the following
result.

Theorem 1 • Any hypergraph that is induced
by a family of n simple Jordan regions such
that the union complexity of any m of them is
given by u(m) and u(m)/m is non-decreasing
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is O(u(n)/n)-colorable. In particular, any finite
family of pseudodisks can be colored with a con-
stant number of colors.

• Any hypergraph induced by a finite family of
disks is four-colorable

Later, Aloupis, et. al. [1] considered parameterized
chromatic numbers. In particular, they studied the
quantity c(k), defined as the minimum number of col-
ors required to color a given hypergraph, such that
every (sufficiently large) hyperedge has at least k ver-
tices with k distinct colors. This generalizes the pre-
vious notion of chromatic number, which corresponds
to the case k = 2. They proved the following.

Theorem 2 Any finite family of pseudo-disks in the
plane can be colored with O(k) colors in such a way
that any point covered by r pseudo-disks is covered by
min{r, k} pseudo-disks with distinct colors. For the
special case of disks, the number of colors is at most
24k + 1.

Our results First, we show in section 3 that
Smorodinsky’s result for disks holds for every con-
vex body. The proof is similar to that of Smorodin-
sky, but the graph is constructed in a different way,
reminiscent from Schnyder’s characterization of pla-
nar graphs. This characterization is closely related
to the concept of dimension of graphs and hyper-
graphs. Thus, in section 4 we will show the connec-
tion between both results and study the chromatic
number for three-dimensional hypergraphs. Among
other results, we will show that this number is at most
6(k−1). This improves the constant of Theorem 2 for
this class of hypergraphs, which includes in particular
hypergraphs induced by homothets of a triangle. In
section 5, we will show a lower bound for all the above
problems.

Due to length constraints, some of the proofs have
been omitted and/or simplified. A longer version of
this paper can be found in [2].

Definitions and notations We consider hypergraphs
defined by ranges, which are open convex bodies of the
form Q ⊂ R2 containing the origin. The scaling of Q
by a factor λ ∈ R+ is the set {λx : x ∈ Q}. The
translate of Q by a vector t ∈ R2 is the set {x + t :
x ∈ Q}. The homothet of Q of center t and scaling λ
is the set {λx+ t : x ∈ Q}.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
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Given a collection S of points in the plane, the pri-
mal hypergraph defined by these points and a range Q
has S as vertex set, and {S ∩Q′ : Q′ homothet of Q}
as hyperedge set. Similarly, the dual hypergraph de-
fined by a set S of homothets of Q has S as ver-
tex set, and the hyperedges are all subsets S′ ⊆ S
for which there exists a point p ∈ R2 such that
S′ = {R ∈ S : p ∈ R} (i.e., the set of ranges that
contain p).

For a given range Q, the chromatic number cQ(k)
is the minimum number c such that every primal hy-
pergraph (induced by a set of points) can be colored
with c colors, so that every hyperedge of size r con-
tains min{r, k} vertices with mutually distinct colors.
Similarly, the chromatic number c̄Q(k) is the smallest
number c such that every dual hypergraph (induced
by a set of homothets of Q) can be c-colored so that
every hyperedge of size r contains min{r, k} vertices
with mutually distinct colors.

2 Primal Problem

As a warm-up, we consider the primal version of the
problem for k = 2. We are interested in giving a
coloring of the points of S such that any homothet of
Q that contains two or more points of S contains two
points of different colors.

Given a set of points S and range Q, the general-
ized Delaunay graph of S induced by Q is a graph
G = (S,E) with S as vertex set. For any two
points p, q ∈ S, their edge pq is in E if and only
there exists a homothet Q′ of Q such that Q′ con-
tains p, q and no other point of S (in other words
pq ∈ E ⇔ Q′ ∩ S = {p, q}). Note that the Delau-
nay graph induced by disks corresponds to the classic
Delaunay triangulation.

Lemma 3 [6] For any convex range Q and set of
points S, the Delaunay graph of S induced by Q is
planar

The above result has been rediscovered many times
along the literature for different types of ranges. See
the extended version of this paper [2] for more details.

Theorem 4 For any convex range Q we have
cQ(2) ≤ 4.

Proof. Consider the Delaunay graph of S induced by
Q. By Lemma 3, this graph is planar and thus can be
four colored. In the following we will show that this
coloring is also a valid coloring for our purpose. LetQ′

be any homothet of Q containing two or more points
of S. Note that if Q′ contains exactly two points p
and q we have pq ∈ E by definition of generalized De-
launay graph. In particular, the colors of p and q are
different, hence Q′ cannot be monochromatic. If Q′

(x, y)

ρ(Q′)

p

Figure 1: Mapping of a range Q′ (in grey) to a point
in ρ(Q′) ∈ R3 and mapping of a point p to a cone.
The main property of the mapping is that inclusions
are reversed (i.e., a point p is inside Q′ if and only if
the cone π(p) contains ρ(Q′)).

has strictly more than two points of S, we continu-
ously shrink it until it contains exactly two points p, q
of S (more details of this process can be seen in [2]).
As before we have that both p, q ∈ Q′ and pq ∈ E,
hence Q′ cannot be monochromatic. �

3 Dual Problem

We now consider the dual version of the problem.
That is, we are given a set S of homothets of Q. We
say a point is k-deep whenever it is covered by at least
k elements of S. We apply the same technique as in
the primal case: given S, we construct a planar graph
G(S) = (S,E(S)). The main property of G is that
any two-deep point will be covered by two adjacent
vertices of G(S).

Let Q′ be a homothet of Q with center (x, y) and
scaling d. We denote by ρ(Q′) the point (x, y, d) ∈ R3.
Given a set S of homothets of Q, we define ρ(S) =
{ρ(Q′) : Q′ ∈ S}.

Similarly, we associate with every point p =
(x, y, d) ∈ R3 the cone π(p) defined as follows. Let
Q∗ be the reflexion of Q about its center. The in-
tersection of π(p) with the horizontal plane of height
z ≥ d is the homothet of Q∗ with center (x, y) and
scaling z−d. The intersection of π(p) with a horizon-
tal plane of height z < d is empty. Note that the cone
π(p) so defined is convex.

We now proceed to define the graph G(S). Its ver-
tex set is S, and two elements Q′, Q′′ of S are adja-
cent if and only if there exists a point p ∈ R3 such
that π(p) ∩ ρ(S) = {ρ(Q′), ρ(Q′′)}. Thus G(S) is a
Delaunay graph in R3, with cones π(p) as ranges.

For any point p ∈ R2, let Sp be the set of ranges
containing p (i.e., Sp = {Q′ ∈ S : p ∈ Q′}). As in the
primal case, a valid coloring of G will suffice for our
problem:
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Lemma 5 For any p ∈ R2 such that |Sp| ≥ 2, there
exist Q′, Q′′ ∈ Sp such that Q′Q′′ ∈ E(S).

Proof. For every point p = (x, y) ∈ R2 we con-
sider its cone π((x, y, 0)). The number of points of
ρ(S) contained in this cone is the number of elements
of S containing p. We translate vertically upwards
π((x, y, 0)) until it contains exactly two points ρ(Q′)
and ρ(Q′′) (more details of this process can be seen
in [2]). These two form an edge in G(S). Since, the
translated cone is contained in π(p) both Q′ and Q′′

belong to Sp. �

Lemma 6 The graph G(S) is planar.

Proof. By definition of E(S), we know that for ev-
ery edge Q′Q′′ ∈ E there exists p ∈ R3 such that
π(p) ∩ ρ(S) = {ρ(Q′), ρ(Q′′)}. We draw the edge
QQ′′ as the projection on a horizontal plane of the
two line segments connecting respectively ρ(Q′) and
ρ(Q′′) with p.

Note that crossings involving two edges with a com-
mon endpoint can be eliminated, so we can simply
show that the proposed embedding has no crossing
involving vertex-disjoint edges. Consider two such
edges uu′ and vv′, and their corresponding witness
cones π1 3 u, u′ and π2 3 v, v′. We must have u 6∈ π2

and v 6∈ π1.
Suppose that the projections of the segments con-

necting u with the apex of π1 and v with the apex
of π2 cross at an interior point x. Consider the ver-
tical line ` that passes through x: by construction,
this line must intersect with both segments at points
a and b, respectively. Without loss of generality we
assume that a has lower z coordinate than b. From
the convexity of π1, we have a ∈ π1. However, this
yields a contradiction, since v ⊆ π(b) ⊆ π(a) ⊆ π1

and we assumed v 6∈ π1. �

Theorem 7 For any convex range Q we have
c̄Q(2) ≤ 4.

4 Coloring Three Dimensional Hypergraphs

The proof of Lemma 6 actually generalizes the “easy”
direction of Schnyder’s characterization of planar
graphs. We first give a brief overview of this fun-
damental result.

4.1 Poset dimension and Schnyder’s theorem

The vertex-edge incidence poset of a graph G = (V,E)
is a bipartite poset P = (V ∪E,�P ), such that e �P v
if and only if e ∈ E, v ∈ V , and v ∈ e. The dimension
of a poset P = (S,�P ) is the smallest d such that
there exists a injective mapping f : S → Rd, such that
u �P v if and only if f(u) ≤ f(v), where the order ≤
is the componentwise partial order on d-dimensional
vectors.

Theorem 8 ([7]) A graph is planar if and only if
its vertex-edge incidence poset has dimension at most
three.

The easy direction of Schnyder’s theorem consists
of showing that every graph with vertex-edge inci-
dence poset of dimension at most three is planar. The
non-crossing drawing that is considered in the proof
is similar to ours, and simply consists, for every edge
e = uv, of projecting the two line segments f(e)f(u),
and f(e)f(v) onto the plane x+ y + z = 0. This can
be identified as a special case of our proof, in which
Q is an (equilateral) triangle.

In fact, Lemma 5 directly yields the following corol-
lary.

Corollary 9 Every hypergraph with vertex-edge in-
cidence poset of dimension at most three is four-
colorable.

4.2 Polychromatic coloring of three-dimensional
hypergraphs

We now adapt the above corollary for higher values of
k. That is, we are given a three-dimensional hyper-
graph G = (V,H) and a constant k ≥ 2. We would
like to color the vertices of G such that any hyperedge
e ∈ H contains at least min{|e|, k} vertices with dif-
ferent colors. We will denote by c3(k) to the minimum
number of colors necessary so that any three dimen-
sional hypergraph can be colored. We note that the
problem is self-dual: any instance of the dual problem
can be transformed into a primal coloring problem by
symmetry with respect to the point (1, 1, 1) (assum-
ing that all points are mapped to the interior of the
unit cube). Hence, any result for the primal coloring
problem will apply to the dual and vice-versa.

In order to avoid degeneracies we assume that no
two vertices of G in the mapping share an x, y or z
coordinate. For any hyperededge e ∈ H, we define the
x-extreme of e as the point x(e) ∈ e whose mapping
has smallest x-coordinate. Analogously we define the
y and z-extremes and denote them y(e) and z(e), re-
spectively. For any hyperedgeedge e ∈ H, there exist
many points in R3 that dominate the points of e. We
will assume that e is mapped to the point qe ∈ R3

whose x coordinate is equal to the x coordinate of
x(e) (analogously for the y and z coordinates). We
say that a hyperedge e is degenerate if two extremes
of e are equal.

Lemma 10 For any k ≥ 3, the graph G has at most
3n degenerate hyperedges of size exactly k

For any 2 ≤ k ≤ n, we define the graph Gk(S) =
(S,Ek) , where for any u, v ∈ S we have uv ∈ Ek if
and only if there exists a point a point q ∈ R3 that
dominates u, v and at most k − 2 other points of S
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(that is, we replace hyperedges of size k or less by
cliques). The main property of this graph is that any
coloring of Gk(S) (in the classic graph coloring sense)
induces a polychromatic coloring of G.

We now bound the total number of edges of Gk(S):

Lemma 11 For any set S of points and 2 ≤ k ≤ n,
graph Gk(S) has at most 3(k − 1)n− 6 edges

The bound on the number combined with the mini-
mum degree coloring technique [3] allows us to obtain
a coloring of G:

Theorem 12 For any k ≥ 2, and three-dimensional
hypergraph G = (V,H), the vertices of G can be col-
ored with 6(k−1) colors so that any hyperedge e ∈ H
contains min{|e|, k} points with distinct colors. In
other words c3(k) ≤ 6k − 6

4.3 Coloring triangles

In this section we will give a very simple application
of the previous result. It is easy to show that triangle
containment posets (that is, posets of inclusion of ho-
mothets of a given triangle) have dimension at most
3. Thus the dual hypergraphs induced by collections
of triangles have dimension at most 3, and our result
applies.

Theorem 13 Triangle containment posets have di-
mension at most 3.

Corollary 14 For any k ≥ 3, any set S of homothets
of a triangle can be colored with 6(k−1) colors so that
any point p ∈ R2 covered by r homothets is covered
by min{r, k} homothets with distinct colors.

Note that this result extends the result of Theorem
7 (for the case in which Q is a triangle) to larger values
of k. Other than being more general, this proof shows
some interesting properties.

Consider the primal variant of Corollary 14: we
would like to show that a set S of points can be col-
ored with few colors such that any homothet ∆ of a
fixed triangle will contain min{|∆∩S|, k} points with
different colors. Although the problems are clearly
similar, it is not easy to see that they are equivalent.
However, by Theorem 13, we know that any instance
of the dual problem will generate a three-dimensional
hypergraph. Since the dual of a three dimensional
hypergraph is another three dimensional hypergraph
(as mentioned in Section 4.2), we can apply Theorem
12 to both problems.

In the following Section we will show lower bounds
for cQ(k) and c̄Q(k) for many different ranges (among
them the triangle). Since triangle containment posets
have dimension at most 3, this will directly give the
same lower bounds for c3(k). That is, c3(k) ≥ c∆(k),
where ∆ is any triangular range.

5 Lower Bound

In this section we will give a lower bound for cQ(k).
For that we will use the well known concept of nor-
mal direction of Q in a point p (that is, the normal
of Q at the boundary point p is the unit vector that
is orthogonal to the halfplane that passes through p
and supports Q, pointing outwards from Q). We say
that a range has m distinct normal directions if there
exist m different points such that for any two points,
their normals are linearly independent. Note that any
affine transformation of a square has two normal di-
rections, a triangle three and a circle has infinitely
many.

Lemma 15 Any range Q with at least three dis-
tinct normal directions satisfies cQ(k) ≥ 4bk/2c and
c̄Q(k) ≥ 4bk/2c.

The Lemma shows that the upper bounds of Sec-
tions 2 and 3 are tight for any range with at three dis-
tinct normal directions. Notice that the only bounded
shape that does not have three distinct normal direc-
tions is the square (and any affine transformation).
The above reasonings can be adapted for this case,
but for a weaker cQ(k) ≥ 3bk/2c lower bound.
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