
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Flow Computations on Imprecise Terrains

Anne Driemel∗ Herman Haverkort† Maarten Löffler‡ Rodrigo I. Silveira§

Abstract

We study the computation of the flow of water on
imprecise terrains. We consider two approaches to
modeling flow on a terrain: one where water can only
flow along the edges of a predefined graph (for ex-
ample a grid, a triangulation, or its dual), possibly
non-planar, and one where water flows across the sur-
face of a polyhedral terrain in the direction of steepest
descent. In both cases each vertex has an imprecise
height, given by an interval of possible values, while
its (x, y)-coordinates are fixed. For the first model,
we give a simple O(n log n) time algorithm to com-
pute the maximal watershed of a vertex, where n is
the number of edges of the graph. We show that, in
contrast, in the second model the problem of deciding
whether one vertex may be contained in the watershed
of another is NP-hard.

1 Introduction

Simulating the flow of water on a terrain is a prob-
lem that has long been studied in geographic infor-
mation science (GIS). It is common practice to derive
drainage networks, channel lines, and catchment areas
directly from a digital elevation model.

Naturally, these computations are affected by mea-
surement errors of the elevations. A frequent way to
deal with this imprecision is to model the elevation at
a point of the terrain using stochastic methods [3, 7],
leading to results that are not fully reliable. An ap-
proach taken in computational geometry [1, 2, 4] is to
replace the exact elevation of each surface point by
an imprecision interval, and computing the outcome
of the most optimistic and pessimistic scenarios ex-
actly. This is the approach we take in this paper.

When simulating water flow on terrain surfaces, it
is assumed that water flows downward, in the direc-
tion of steepest descent. Most hydrological research in
GIS uses a grid elevation model, in which each grid cell
can drain to one or more of its eight neighbors, such
∗Utrecht University, The Netherlands, anne@cs.uu.nl. This

work has been supported by the Netherlands Organisation for
Scientific Research (NWO) under RIMGA.
†Dept. of Computer Sc., TU Eindhoven, the Netherlands
‡Computer Science Department, University of California,

Irvine, USA, mloffler@uci.edu. Funded by the U.S. Office
of Naval Research under grant N00014-08-1-1015.
§Departament de Matemàtica Aplicada II, Universitat

Politècnica de Catalunya, Spain, rodrigo.silveira@upc.edu.
Supported by NWO.

as in the D-8 model [5]. For a discussion about the
most common flow direction models see Tarboton [6].
When the surface is represented by a polyhedral ter-
rain, the flow of water can be traced across the surface
of a triangle, as discussed by Yu et al. [8].

Definitions. We define an imprecise terrain T as
a possibly non-planar geometric graph in IR2 in which
each vertex v ∈ IR2 has an imprecise third coordi-
nate, which represents its elevation . We denote the
bounds of the elevation of v with low(v) and high(v).
A realization R of an imprecise terrain T consists of
the given graph together with an assignment of eleva-
tions to vertices such that for each vertex v its eleva-
tion elevR(v) is at least low(v) and at most high(v).
We denote the set of all realizations of an imprecise
terrain T with RT . We study the flow of water on
imprecise terrains in two different models.

In the network model we assume that water only
flows along the edges of the realization. The steepness
of descent along an edge (p, q) in a realization R is
defined as σR(p, q) = (elevR(p)− elevR(q))/|pq|. The
water that arrives at a particular vertex p, flows to the
neighbor q, such that σR(p, q) is positive and maximal
over all edges incident to p. For simplicity of exposi-
tion, we assume that this steepest descent neighbor is
always unique and that edges are never horizontal in
the realizations considered. If water flows from p to q
in a realization R we write p→

R
q. If a vertex does not

have a lower neighbor we call it a local minimum .
The watershed of a vertex q in a realization R

is defined as the set W(R, q) = {p : p→
R
q}. The

potential watershed of a vertex q in a terrain T
is W∪(q) =

⋃
R∈RT

W(R, q), that is, it is the set of
points p for which there exists a realization R, such
that water flows from p to q.

If the graph in the (x, y)-domain is a planar tri-
angulation, then we can also consider the case that
water flows across the polyhedral terrain represented
by a realization. We call this the surface model .
The water that arrives at a particular point on this
surface now flows in the true direction of the steepest
descent, possibly across the interior of a triangle.

Results. In Section 2 we give a simple O(n log n)
time algorithm to compute the potential watershed of
a vertex in the network model, where n is the number
of edges of the graph. The analysis also shows that
for every vertex p, there is a realization of the terrain

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

119

27th European Workshop on Computational Geometry, 2011

in which the watershed of p is its complete potential
watershed, i.e., W∪(p) is realizable. In contrast, we
show in Section 3 that in the surface model the prob-
lem of deciding whether water can possibly flow from
a given point p to a given point q is NP-hard.

2 Computing watersheds in the network model

Canonical realization. We first show that the poten-
tial watershed of a vertex q is realizable.

Definition 1 The watershed-overlay of a set of
watersheds W(R1, q1), ...,W(Rk, qk) is the realiza-
tion R∗ such that for every vertex v, we have
that elevR∗(v) = high(v) if v /∈ ⋃

W(Ri, qi) and
elevR∗(v) = mini:v∈W(Ri,qi) elevRi

(v) otherwise.

Lemma 1 Let R∗ be the watershed-overlay of
W(R1, q), . . . ,W(Rk, q), then it holds that W(R∗, q)
contains W(Ri, q), for any i ∈ {1, . . . , k}.

Proof. Let u be a vertex of the terrain, which is con-
tained in one of the given watersheds. Let Ri be
a realization from R1, ..., Rk such that elevR∗(u) =
elevRi

(u). To prove the lemma, we show that u is
contained in W(R∗, q) by induction on increasing ele-
vation of u in R∗. The base case is that u is equal to
q, and in this case the claim holds trivially.

Now, consider the vertex v which is reached from
u by taking the steepest descent edge in Ri. Since
elevR∗(v) ≤ elevRi

(v) ≤ elevRi
(u) = elevR∗(u), it

holds that v lies lower than u in R∗.
If v is still the steepest descent neighbor of u in

R∗, then, by induction, v ∈ W(R∗, q) and therefore
u ∈ W(R∗, q). Otherwise, there is a vertex v̂ such
that σR∗(u, v̂) > σR∗(u, v). There must be an Rj

such that v̂ ∈W(Rj , q), since otherwise, by construc-
tion of the watershed-overlay, we have elevR∗(v̂) =
high(v̂) ≥ elevRi(v̂) and thus, σRi(u, v̂) ≥ σR∗(u, v̂) >
σR∗(u, v) ≥ σRi(u, v) and v would not be the steepest
descent neighbor of u in Ri. Therefore, by induction,
also v̂ ∈W(R∗, q) and, again, u ∈W(R∗, q). �

The above lemma implies that for any vertex q,
the watershed-overlay R∗ of all possible realizations
in RT , realizes the potential watershed of q, i.e.,
W∪(q) = W(R∗, q). Therefore, we call R∗ the canon-
ical realization of the potential watershed W∪(q).

Algorithm. Next, we describe how to compute the
canonical realization of W∪(q) for a given vertex q.
The idea of the algorithm is to compute the vertices of
W∪(q) and their canonical elevations in increasing or-
der of elevation, similar to the way in which Dijkstra’s
shortest path algorithm computes distances from the
source. Refer to Algorithm 1 for the general outline.

The algorithm uses a subroutine Expand(q′, z′),
which returns for a vertex q′ and an elevation z′ ∈

Algorithm 1 ComputePWS(q)
1: Enqueue (q, z) with key z = low(q)
2: while the Queue is not empty do
3: (q′, z′) = DequeueMin()
4: if q′ is not already in the output set then
5: Output q′ and set elevR∗(q′) = z′

6: Enqueue each (p, z) ∈ Expand(q′, z′)
7: end if
8: end while

[low(q′), high(q′)] the set of neighbors P of q′, such
that for each p ∈ P , there exists a realization R with
elevR(q′) ∈ [z′, high(q′)], such that p→

R
q′. In partic-

ular, it returns tuples of the form (p, z), where z is
the minimum elevation of p over all such realizations
R. We will now explain the preprocessing step that
allows an efficient computation of Expand(q′, z′).

We define the slope diagram of a vertex p as the
set of points q̂i = (di, high(qi)), such that qi is a
neighbor of p and di is its distance to p in the (x, y)-
projection. Let q1, q2, ..., be the neighbors of p in-
dexed such that q̂1, q̂2, ... appear in counter-clockwise
order along the boundary of the convex hull in the
slope diagram, starting from the leftmost point and
continuing to the lowest point (for simplicity of ex-
position we ignore the remaining neighbors). Let zi

be the value where the supporting line of the edge
q̂i, q̂i+1 intersects the vertical axis of the slope dia-
gram, see Figure 1. We denote with Z(p) the result-
ing decomposition of [low(p), high(p)] into intervals
that is given by the zi and annotated by the corre-
sponding points qi. We can precompute Z(p) in time
O(d log d) and space O(d), where d is the vertex de-
gree of p. Since the sum of vertex degrees is O(n),
this takes O(n log dmax) time and O(n) space over-
all, where dmax is the maximum vertex degree in the
terrain.

Now, for a neighbor p of q′, we can compute its
elevation as it should be returned by Expand(q′, z′)
by computing the lower tangent to the convex hull
in the slope diagram, which passes through the point
q̂′ = (d′, z′), where d′ is the distance to p in the (x, y)-

q̂i+1

high(qi)

di

zi

zi−1

q̂i

q̂i−1

z

q̂′

Figure 1: Slope diagram of the neighbors of p.

120

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

projection, see Figure 1. This can be done via a binary
search on Z(p) in time in O(log dmax). Intuitively, we
annotated each interval of Z(p), with the neighbor of
p that the vertex q′ has to compete with for being the
steepest-descent neighbor if the elevation of p is in this
interval. Doing this for all neighbors of q′, we find that
Expand(q′, z′) runs in O(d log dmax) time, where d is
the vertex degree of q′. We get the following lemma.
We omit the full proof due to space limitations.

Lemma 2 After precomputations in O(n log dmax)
time and O(n) space, Expand(q, z) can be imple-
mented to run in O(d log dmax) time.

To prove the correctness of Algorithm 1 we use
induction on the vertices extracted from the prior-
ity queue in the order of their extraction. The in-
duction hypothesis says that for each extracted tuple
(q′, z′), it holds that there exists a realization R with
elevR(q′) = z′ and q′→

R
q, such that this elevation is

minimal. By Lemma 1, this implies that the algo-
rithm outputs the canonical realization of W∪(q). As
for the running time, it is easy to see that each vertex
is expanded at most once. Using Lemma 2, we get
the following theorem. We omit the full proof due to
space limitations.

Theorem 3 The algorithm ComputePWS(q) com-
putes the canonical realization of the potential water-
shed W∪(q) in time O(n log n), where n is the number
of edges of the graph.

3 NP-hardness in the surface model

In this section we sketch how to prove that decid-
ing whether water potentially flows from a point s to
another point t on an imprecise triangulated terrain,
under the surface model, is NP-hard. The reduction is
from 3-SAT; the input is an instance with n variables
and m clauses. Globally, the construction consists of
a grid with O(m) × O(n) squares, where each clause
corresponds to a column and each variable to a row of
the grid; the construction also contains some columns
and rows that do not directly correspond to clauses
and variables. The grid is placed across the slope of a
“mountain” with shape similar to that of a pyramidal
frustum. Figure 2 illustrates the construction. (The
vertical faces in the illustration can easily be replaced
by non-vertical triangulated slopes without affecting
the construction.) A key element in the construction
is the divider gadget (Figure 3, left), which is placed
at every intersection of a clause column and a vari-
able row. It consists of two imprecise vertices with
a long edge between them and ensures that only if
the two imprecise vertices are both at opposite ex-
treme heights, can any water pass the divider gadget,
otherwise it will flow to a local minimum. This way

it carries over the (inverted) state of each imprecise
vertex from left to right.

Across each divider gadget, water may flow in sev-
eral courses, that may each veer off to the left or to
the right, depending on the elevations of the impre-
cise vertices. We assume that the water takes the left
courses if the variable is true, and the right courses
if it is false. Now, to encode each clause, we let the
water flow to a local minimum if and only if the clause
is not satisfied. Figure 2 (right) shows an example.

In order to link the values of the imprecise vertices
of the heights in the divider gadgets that belong to
the same variable, we need to make sure that neigh-
boring vertices have opposite extremal heights, just
like in divider gadgets. For this, we use a connector
gadget, which is basically the same construction as the
divider gadget, see Figure 3 (right). As in the divider
gadget, we only let the water escape if the heights of
the imprecise vertices are at opposite extremes.

With this construction water can flow from s to t
if and only if the 3-SAT formula can be satisfied.

4 Further Work

There are many related problems in the network
model that cannot be discussed due to space limi-
tations. We want to mention at least some of them.

Similar to the potential watershed of q, we can de-
fine the set of points that potentially receive water
from q. Naturally, there is not always a canonical re-
alization for this set, however, it can be computed in
the same way as described in Section 2 using a pri-
ority queue that processes vertices in decreasing or-
der of their maximal elevation, such that they would
still receive water from q. Our definitions and algo-
rithms naturally extend to sets of nodes. Therefore,
we can also compute potential watersheds with re-
spect to lakes or river beds.

Secondly, besides the potential flow paths, one may
be interested in the question of whether water always
flows between two vertices. We can define the set

W∩(q) =
⋂

R∈RT

W(R, q),

which is the set of points from which water flows to q
in any realization. Observe that a vertex is contained
in W∩(q) if and only if it does not have a potential
flow path to a potential local minimum or a point
outside W∪(q), which does not go through q. We can
compute this set using the techniques described here.
However, this definition may be very sensitive to flow
paths being interrupted by overlapping imprecision
intervals of neighboring vertices in relative flat terrain.
Therefore, it is not clear if this is the right definition
of persistent water flow.

Thirdly, note that for two given vertices p and
q, such that p ∈ W∪(q), it is not necessarily true

121

27th European Workshop on Computational Geometry, 2011

s

t

s

t

x1

x2

x3

x1 ∨ ¬x3 ∨ x4

x4

Figure 2: Left: Global view of the construction, showing the grid on the mountain slope. The fixed parts are
shown in gray, the variable parts are shown yellow (for divider gadgets) and orange (for connector gadgets).
Center: Top down view showing the locations of the gadgets, and the n× 2m green vertices, the only ones with
imprecise heights. Right: Detail of a clause, which forms one of the columns of the grid in the center.

Figure 3: Left: A divider gadget consists of two imprecise vertices with an edge between them. Right: A
connector gadget. The triangle needs to be much narrower, and the water streams need to be much closer to the
center of the construction than in the picture.

that W∪(p) ⊆ W∪(q). Therefore the potential wa-
tersheds of a terrain do not form a proper hierarchy.
This makes it challenging to design a data structure
that stores imprecise watersheds and answers queries
about the flow of water between vertices efficiently.

Finally, the contrast between the results in Sec-
tion 2 and Section 3 leaves room for further research
questions, i.e., would it be possible to apply realistic
input assumptions to make the potential flow compu-
tation in the surface model tractable? Another ques-
tion is whether there exists a model of approximation
for water flow and how it relates to the network model.

Acknowledgments. We are grateful to Chris Gray for

many interesting and useful discussions.

References

[1] C. Gray and W. Evans. Optimistic shortest paths
on uncertain terrains. In Proc. 16th Canad. Conf. on
Comput. Geom., pages 68–71, 2004.

[2] C. Gray, M. Löffler, and R. I. Silveira. Smoothing im-
precise 1.5D terrains. In Proc. 6th International Work-
shop on Approximation and Online Algorithms, pages
214–226, 2009.

[3] F. Hebeler and R. Purves. The influence of elevation
uncertainty on derivation of topographic indices. Ge-
omorphology, 111(1-2):4 – 16, 2009.

[4] Y. Kholondyrev and W. Evans. Optimistic and pes-
simistic shortest paths on uncertain terrains. In Proc.
19th Canad. Conf. on Comput. Geom., pages 197–200,
2007.

[5] J. O’Callaghan and D. Mark. The extraction
of drainage networks from digital elevation data.
Computer vision, graphics, and image processing,
28(3):323–344, 1984.

[6] D. Tarboton. A new method for the determination of
flow directions and upslope areas in grid digital ele-
vation models. Water Resources Research, 33(2):309–
319, 1997.

[7] S. P. Wechsler. Uncertainties associated with digital
elevation models for hydrologic applications: a review.
Hydrology and Earth System Sciences, 11(4):1481–
1500, 2007.

[8] S. Yu, M. van Kreveld, and J. Snoeyink. Drainage
queries in TINs: from local to global and back again.
In Proc. 7th Int. Symp. on Spatial Data Handling,
pages 13A.1–13A.14, 1996.

122

