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Approximate Polytope Membership Queries∗
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Abstract

In this paper, we consider an approximate version
of a fundamental geometric search problem, polytope
membership queries. Given a convex polytope P in
R

d, the objective is to preprocess P so that, given a
query point q, it is possible to determine efficiently
whether q lies inside P subject to an allowed error
ε. Previous solutions were based on straightforward
applications of classic polytope approximation tech-
niques by Dudley (1974) and Bentley et al. (1982).
The former yields minimum storage, and the latter
yields constant query time. A space-time tradeoff can
be obtained by interpolating between the two. We
present a significant improvement to this tradeoff. For
example, using the same storage as Dudley, we reduce
the query time from O(1/ε(d−1)/2) to O(1/ε(d−1)/4).

To establish the relevance of our results, we in-
troduce a reduction from approximate nearest neigh-
bor searching to approximate polytope membership
queries, providing significant improvements to the
best known space-time tradeoffs for approximate
nearest neighbor searching.

1 Introduction

The problem of determining whether a query point q
lies within a convex polytope P , represented as the
intersection of halfspaces, is dually equivalent to an-
swering halfspace emptiness queries. Such queries find
applications in many geometric problems, such as lin-
ear programming queries, ray shooting, nearest neigh-
bor searching, and the computation of convex hulls.
In dimension d ≤ 3, it is possible to build a data
structure of linear size that can answer such queries in
logarithmic time. In higher dimensions, however, all
exact data structures with roughly linear space take
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˜O(n1−1/⌊d/2⌋) query time, which, except in small di-
mensions, is little better than brute-force search.

Throughout, we assume that P is a convex polytope
lying within the hypercube [−1, 1]d, which is repre-
sented as the intersection of the set of halfspaces that
define its facets. Given ε > 0, we say that P ′ is an ε-
approximation to P if the Hausdorff distance between
P and P ′ is at most ε. (Typically, polytope approx-
imation is defined relative to P ’s diameter, but by
scaling P to lie within [−1, 1]d, there is no loss of gen-
erality in this formulation.) Dudley [6] showed that,
for any convex body, it is possible to construct an
ε-approximating polytope with O(1/ε(d−1)/2) facets.
This bound is asymptotically tight in the worst case.

Given a polytope P , a positive real ε, and a query
point q, an ε-approximate polytope membership query

determines whether q lies inside or outside of P , but
it may return either answer if q’s distance from P ’s
boundary is at most ε. Approximate polytope mem-
bership queries arise in a number of applications, such
as collision detection, training a support vector ma-
chine, and approximate nearest neighbor searching.

Dudley’s construction provides a näıve solution to
the approximate polytope membership problem. Con-
struct an ε-approximation P ′, and determine whether
q lies within all its bounding halfspaces. This ap-
proach takes O(1/ε(d−1)/2) query time and space.
An alternative simple solution was proposed in [2].
Create a d-dimensional grid with cells of diameter ε
and, for every column along the xd-axis, store the
two extreme xd values where the column intersects
P . This algorithm produces an approximation P ′

with O(1/εd−1) facets. Given a query point q, it is
easy to determine if q ∈ P ′ in constant time (assum-
ing a model of computation that supports the floor
function), but the space required by the approach is
O(1/εd−1).

These two extreme solutions raise the question of
whether a tradeoff is possible between space and query
time. Before presenting our results, it is illustrative to
consider a very simple method for generating such a
tradeoff. Given r ∈ [ε, 1], subdivide the bounding hy-
percube into a regular grid of cells of diameter r and,
for each cell that intersects the polytope’s boundary,
apply Dudley’s approximation to this portion of the
polytope. Subject to minor technical details, the re-
sult is a data structure of space O(1/(εr)(d−1)/2) and
query time O((r/ε)(d−1)/2). This interpolates nicely
between the two extremes for ε ≤ r ≤ 1.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Given the optimality of Dudley’s approximation, it
may be tempting to think that the above tradeoff is
optimal, but we will demonstrate that it is possible to
do better. We show first that it is possible to build a
data structure with storage O(1/ε(d−1)/2) (the same
as Dudley) that allows polytope membership queries
to be answered significantly faster, in O(1/ε(d−1)/4)
time. By iterating a suitable generalization of this
construction, it is possible to produce a succession of
structures of increasingly better search times.

Theorem 1 Given a polytope P in [−1, 1]d, a pa-

rameter ε > 0, and a constant α ≥ 2, it is possible to

answer ε-approximate polytope membership queries

in time t = 1/ε(d−1)/α ≥ 1 with storage space

O

(

1/ε
(d−1)

(

1− 1

2⌊log2 α⌋
−

⌊log2 α⌋−1
α

)
)

.

These space-time tradeoffs are presented visually in
Figure 1(a). The lower bound will be discussed later.

The data structure and its construction are both
extremely simple. The data structure consists of a
quadtree where each leaf cell stores a set of halfs-
paces whose intersection approximates the polytope’s
boundary within the cell. A query is answered by
performing a point location in the quadtree followed
by a brute force inspection of the halfspaces in the
node. The data structure is constructed by the fol-
lowing recursive algorithm, called SplitReduce. It is
given the polytope P , the approximation parameter
ε, and the desired query time t. The initial quadtree
box is Q = [−1, 1]d.

SplitReduce(Q):

1. Let P ′ be an ε-approximation of Q ∩ P .

2. If the number of facets |P ′| ≤ t, then Q stores
the hyperplanes bounding P ′.

3. Otherwise, split Q into 2d quadtree boxes and
invoke SplitReduce on each such box.

Although the algorithm itself is deceptively simple,
the analysis of the storage as a function of the query
time t is nontrivial. The storage efficiency depends
on the assumption that the number of facets of P ′ is
approximately minimal. This will be made precise in
Section 2. In addition to proving upper bounds on
the space complexity of the above algorithm, we will
establish a lower bound (see Figure 1(a) and Theo-
rem 6).

To establish the relevance of our results, we in-
troduce a reduction from approximate nearest neigh-
bor searching to approximate polytope membership
queries, providing significant improvements to the
best known space-time tradeoffs for approximate
nearest neighbor searching [1]. Our reduction implies
the following improved space-time tradeoffs for ANN
queries.

Theorem 2 Given set of n points in R
d, a parameter

ε > 0, and a constant α ≥ 2. There is a data struc-

ture for approximate nearest neighbor searching with

query time O(log n+ (log(1/ε))/εd/α) and storage

O

(

n/ε
d

(

1− 1

2⌊log2 α⌋
−

⌊log2 α⌋

α

)
)

.

These space-time tradeoffs together with known up-
per bounds and lower bounds [1] are illustrated in Fig-
ure 1(b). Although the connection between the poly-
tope membership problem and ANN has been noted
before by Clarkson [5], we are the first to provide a
reduction that holds for point sets with unbounded
aspect ratio. Details are omitted in this version.

2 Upper Bound for Polytope Membership

In this section, we present upper bounds for the stor-
age of the data structure obtained by the SplitReduce

algorithm for a given query time t. We may assume
that P is presented succinctly to our algorithm, for
example, as the output of Chan’s coreset construc-
tion [3]. We start by discussing the first step of the
algorithm.

Step 1 consists of obtaining a polytope P ′ that ε-
approximates Q∩ P . Some polytopes can be approx-
imated with far fewer than Θ(1/ε(d−1)/2) facets. The
problem of approximating a polytope with the min-
imum number of facets reduces to a set cover prob-
lem [7] and an O(log(1/ε)) approximation can be ob-
tained by a greedy algorithm. Clarkson [4] showed
that if c is the smallest number of facets required to
approximate P , then we can obtain an approximation
with O(c log c) facets in O(nc2 log n log c) randomized
time, where n is the number of facets of P .

For simplicity, we assume that the algorithm used
in Step 1 produces an approximation to Q∩P with a
minimum number of facets. (In the full version it will
be shown that an application of Dudley’s algorithm to
an appropriate subset of P suffices for our purposes.
An alternative is to run Clarkson’s approximation al-
gorithm on Q ∩ P . This increases the query time by
a negligible factor of O(log(1/ε)).)

For completeness, we now describe Dudley’s algo-
rithm. Let P be a polytope, and let the size σP of P
denote the side length of the smallest axis aligned box
Q that contains P . We assume that the center of Q
is the origin. Dudley’s algorithm obtains an approx-
imation polytope P ′ in the following manner. Let B
be a ball of radius σP

√
d centered at the origin. Place

a set J of Θ((σP /ε)
(d−1)/2) points on the surface of

B such that every point on the surface of B is within
distance O(

√
εσP ) of some point in J . For each point

j ∈ J , determine the nearest facet of P and add the
corresponding halfspace to P ′. We consider that each
point j ∈ J generates a facet of P ′ of diameter at most
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Figure 1: The multiplicative factor in the exponent of the 1/ε term for (a) polytope membership queries and (b)
approximate nearest neighbor (ANN) queries. The O(1) term in the exponent corresponds to a constant that
does not depend on d.

√
εσP , even if these facets are coplanar. The follow-

ing lemma follows from standard results on Dudley’s
algorithm.

Lemma 3 Given a polytope P of size σP , Dud-

ley’s algorithm produces a polytope P ′ with

O((σP /ε)
(d−1)/2) facets that approximates P . Fur-

thermore, all facets of P ′ have diameter at most
√
εσP .

Recall that our algorithm takes four inputs: poly-
tope P , box Q, query time t, and approximation er-
ror ε. For simplicity, we refer to the algorithm as
SplitReduce(Q), since the parameters P , t, ε remain
unchanged throughout the recursive calls. The out-
put of our algorithm is a quadtree whose leaf cells
induce a subdivision of Q. Each leaf cell L stores an
approximation of P ∩ L with tL ≤ t facets, where tL
is the minimum number of facets required to approx-
imate P ∩ L. The storage of this quadtree is defined
as the total number of stored facets over all the leaf
cells. Before we prove the whole space-time tradeoff,
we show that the algorithm produces a data struc-
ture with query time t = Θ(1/ε(d−1)/4)) and the same
storage as Dudley’s algorithm, O(1/ε(d−1)/2).

Lemma 4 The output of SplitReduce(Q) for t ≥
(σQ/ε)

(d−1)/4 ≥ 1 is a quadtree with storage

O((σQ/ε)
(d−1)/2).

Proof. Let T denote the quadtree produced by the
algorithm. For each leaf cell L of T , let tL be the
number of facets stored in L. We will show that
∑

L
tL ≤ (σQ/ε)

(d−1)/2, which establishes the storage
bound and proves the lemma.
Towards this end, we first prove a lower bound on

the size of any leaf cell L. We assert that there ex-
ists a constant c1 such that every leaf cell L has size

σL ≥
√

εσQ/c1. The assertion follows from Lemma 3.
In particular, the standard Dudley technique applied
to a cell of size

√

εσQ/c1 produces a polytope with at

most cD(σQ/c1ε)
(d−1)/4 facets, where cD is the con-

stant arising from Dudley’s method. By choosing c1
to be a sufficiently large constant, the number of facets
is at most t and the termination condition of our al-
gorithm implies that such a cell is not subdivided.

Let PD be the polytope obtained by applying Dud-
ley’s algorithm to P ∩ Q. Combining our assertion
with Lemma 3, each facet of PD intersects O(1) leaf
cells. We assign each facet to all leaf cells that it
intersects. The correctness of Dudley’s algorithm im-
plies that the facets assigned to any cell L provides
an approximation of P ∩L. Thus, tL is no more than
the number of Dudley facets assigned to L. Since the
number of facets of PD is O((σQ/ε)

(d−1)/2), it follows
that

∑

L
tL = O((σQ/ε)

(d−1)/2), which completes the
proof. �

We now use the previous lemma as a base case in
order to extend the space-time tradeoff to other query
times.

Theorem 5 Let α ≥ 2 be a constant. The output

of SplitReduce(Q) for t = (σQ/ε)
(d−1)/α ≥ 1 is a

quadtree with storage

O

(

(σQ

ε

)(d−1)
(

1− 1

2⌊log2 α⌋
−

⌊log2 α⌋−1
α

)
)

.

Proof. Let k = ⌊log2 α⌋. Our proof proceeds by in-
duction on a constant number of steps k. The base
case case k = 1 corresponds to Lemma 4. Next, as-
sume that the theorem holds for 1, . . . , k − 1, that is,
for α < 2k. We need to prove that the theorem holds
for 2k ≤ α < 2k+1.
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Let T denote the quadtree produced by the algo-
rithm with 2k ≤ α < 2k+1. Let T ′ denote the subtree
induced by cells of size at least

√
εσQ/2. Arguing ex-

actly as in the proof of Lemma 4, the sum
∑

L
tL over

all leaf cells of T ′ is O((σQ/ε)
(d−1)/2). The leaf cells

of T ′ that have tL ≤ t are not refined by the algorithm
and their total storage clearly satisfies the bounds of
the theorem.

We now consider the subset L of leaf cells of
T ′ such that for L ∈ L we have tL > t. By
Markov’s inequality, |L| = O((σQ/ε)

(d−1)/2)/t =

O((σQ/ε)
(d−1)( 1

2−
1
α )). Also, the size of the cells in

L is between
√
εσQ/2 and

√
εσQ, since larger cells

would have been subdivided.
Recall that the induction hypothesis states that the

theorem holds for α < 2k. Since the size of the cells L
in L is σL ≤

√
εσQ, we have t = (σL/ε)

(d−1)/α′

, where
α′ ≤ α/2 for sufficiently small ε ≤ σQ/4 (if ε > σQ/4,
then the theorem holds trivially). Therefore we can
use the induction hypothesis to obtain the following
storage for each cell L ∈ L:

O

(

(σQ

ε

)(d−1)( 1
2−

1

2k
−

k−2
α )
)

.

We then multiply by |L| = O((σQ/ε)
(d−1)( 1

2−
1
α ))

completing the induction. �

Note that the height of the quadtree obtained by
SplitReduce is O(log(1/ε), since cells of size ε are never
subdivided. Therefore, it is straightforward to lo-
cate the quadtree cell containing the query point in
O(log(1/ε)) time. Theorem 1 follows as a straightfor-
ward consequence.

3 Lower Bound for Polytope Membership

In this section, we present lower bounds on the space-
time tradeoffs obtained by our algorithm for polytope
membership. Our main result is the following.

Theorem 6 Let α ≥ 2 be a constant. There

exists a polytope P such that the output of

SplitReduce([−1, 1]d) for t = 1/ε(d−1)/α ≥ 1 is a

quadtree with storage

Ω

(

1/ε
(d−1)

(

1−2
√

2
α
+ 3

α

)

−1
)

.

Our approach is similar to the lower bound proof of
[1]. It is based on constructing a hypercylinder that
takes dimension k, 1 ≤ k ≤ d− 2 as a parameter, and
bounding the storage requirements of our data struc-
ture for it. We carry out this analysis in Lemma 7.

Lemma 7 Let k and t be integers, where 1 ≤ k ≤
d − 2, 1 ≤ t ≤ 1/ε(d−1)/2, and let 0 < ε ≤ 1.
There exists a polytope P such that the output of

SplitReduce([−1, 1]d) for P is a quadtree with storage

Ω
(

t
(

1
εt2/(d−k−1)

)k
)

.

Proof. (sketch) Consider an infinite polyhedral hy-
percylinder C whose “axis” is a k-dimensional linear
subspace K defined by k of the coordinate axes, and
whose “cross-section” is a polytope P0 that approx-
imates a (d − k)-dimensional ball of diameter ∆. If
we choose ∆ = O(εt2/(d−k−1)), then any polytope
P ′

0 that approximates P0 requires at least (2d + 1)t
facets. Define polytope P to be the truncated cylin-
der obtained by intersecting C with the hypercube
[−1, 1]d.
Consider a set X of points that are at least ∆

apart placed on the intersection of [−1, 1]d with the
k-dimensional axis of the hypercylinder C. By a sim-
ple packing argument, we can ensure that the number
of points in X is at least Ω(1/∆k). Let PX

0 denote the
set of cross-sections of C passing through the points
of X. Consider the set of leaf cells of the quadtree
that overlap any cross-section P0 ∈ PX

0 . Recall from
our construction that these cells must together con-
tain at least (2d + 1)t facets. We say that a leaf cell
is small if its size is at most ∆. By a packing ar-
gument, at least t facets are contained in the small
leaf cells intersecting P0. Noting that small leaf cells
cannot intersect two cross-sections of PX

0 , since they
are at least ∆ apart, it follows that the total space
used by all the small leaf cells together is at least
Ω(t|X|) = Ω(t/∆k) = Ω(t(1/(εt2/(d−k−1)))k), which
proves the lemma. �

Setting k appropriately, we obtain the lower bound
in Theorem 6.
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