
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A 3-Approximation Algorithm for Computing Partitions with Minimum
Stabbing number of Rectilinear Simple Polygons

Mohammad Ali Abam∗ Boris Aronov† Mark de Berg‡ Amirali Khosravi‡

Abstract

Let P be a rectilinear simple polygon. The stabbing
number of a partition of P into rectangles is the maxi-
mum number of rectangles stabbed by any axis-parallel
segment inside P . We present a 3-approximation algo-
rithm for finding a partition with minimum stabbing
number. It is based on an algorithm that finds an
optimal partition for histograms.

1 Introduction

Computing decompositions of simple polygons is one of
the fundamental problems in computational geometry.
When the polygon at hand is arbitrary then one typi-
cally wants a decomposition into triangles, and when
the polygon is rectilinear one wants a decomposition
into rectangles. Sometimes any such decomposition
will do; then one can compute an arbitrary triangula-
tion or, for rectilinear polygons, a vertical decomposi-
tion. In other cases one would like the decomposition
to have certain properties. The property we are inter-
ested in is the so-called stabbing number—see below
for a definition—of the decomposition.

Let P be a rectilinear simple polygon with n ver-
tices. We call a decomposition of P into rectangles
a rectangular partition. The stabbing number of a
segment s with respect to a rectangular partition R
is the number of rectangles intersected by s, and the
(rectilinear) stabbing number of R is the maximum
stabbing number of any axis-parallel segment s in the
interior of P . De Berg and Van Kreveld [2] showed
that any rectilinear polygon admits a rectangular par-
tition with stabbing number O(log n). This bound is
asymptotically tight in the worst case: any rectangular
partition of a staircase polygon with n vertices has
stabbing number Ω(logn).

∗Department of Computer Science, TU Dortmund, 44221
Dortmund, Germany, mohammad-ali.abam@tu-dortmund.de
†Department of Computer Science and Engineering, Poly-

technic Institute of NYU, Brooklyn, NY 11201-3840, USA,
aronov@poly.edu. Work by Boris Aronov has been supported
by grant No. 2006/194 from the U.S.-Israel Binational Science
Foundation, by NSF Grant CCF-08-30691, and by NSA MSP
Grant H98230-10-1-0210.
‡Department of Computing Science, TU Eindhoven,

PO Box 513, 5600 MB Eindhoven, the Netherlands,
{mdberg,akhosrav}@win.tue.nl. Work by Amirali Khosravi
has been supported by the Netherlands’ Organisation for Scien-
tific Research (NWO) under project no. 612.000.631.

The algorithm of De Berg and Van Kreveld [2] guar-
antees partitions which are tight in the worst case.
However, some rectilinear polygons admit partitions
with stabbing number O(1). This leads to the topic
of our paper: finding an optimal rectangular partition
of a rectilinear polygon P whose stabbing number is
minimum over all such partitions.

The problem is not known to be np-complete. We
present a 3-approximation algorithm for it. It is based
on an algorithm that finds optimal rectangular par-
titions for histograms. Due to lack of space all the
proofs are omitted in this version, and can be found
in the full version of the paper.

Related work. Chazelle et al. [3] studied the stabbing
number of convex decompositions of polytopes. Tóth
showed that any partition of d-dimensional space (d >
2) into n axis-aligned boxes has rectilinear stabbing

number Ω(log1/(d−1) n), and he presented partitioning
scheme achieving this bound [6]. Hershberger and
Suri [4] gave an algorithm for triangulating a simple
polygon with stabbing number O(log n) which is worst-
case tight. Considering triangulations of point sets,
Agarwal, Aronov and Suri [1] proved that one can
triangulate n points in R2 and R3 (using Steiner points)
with stabbing number O(

√
n · log n).

2 Optimal rectangular partitions

Let P be a rectilinear simple polygon with n vertices.
We denote the interior of P by int(P) and its bound-
ary by ∂P . In the remainder of paper, whenever we
speak of partitions and stabbing numbers, we mean
rectangular partitions and rectilinear stabbing num-
bers. We denote the stabbing number of a partition
R by σ(R). The horizontal stabbing number of R,
denoted σhor(R), is defined as the maximum stabbing
number of any horizontal segment s ⊂ P . The vertical
stabbing number, denoted σvert(R), is defined similarly.
Note that σ(R) = max(σhor(R), σvert(R)).

We start by studying the properties of optimal par-
titions. Consider a partition R of P . The partition
is induced by a set E(R) of maximal edges, that is,
segments of maximal length that are the union of one
or more rectangle edges that are not part of ∂P . A
maximal edge is anchored if at least one of its end-
points is a vertex of P . We first show that there exists
an optimal partition with only anchored edges.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

103

27th European Workshop on Computational Geometry, 2011

Lemma 1 Any rectilinear simple polygon P has an
optimal partition Ropt in which all maximal edges are
anchored.

A binary space partition, or bsp for short, of a
rectilinear polygon P is a rectangular partitioning
obtained by the following recursive process. First,
the polygon is cut into two subpolygons with an axis-
parallel segment contained in int(P), and then the two
subpolygons are partitioned recursively in the same
way. A bsp is anchored if each of its cuts is anchored.

For so-called histograms we can show that there
is always an optimal partition that is an anchored
bsp. In fact, we show that any anchored partition
of a histogram is a bsp. A (vertical) histogram is a
rectilinear polygon H that has a horizontal edge seeing
every point q ∈ int(H). Here we say that an edge e
sees a point q ∈ P if there is an axis-parallel segment
s connecting e to q that is completely inside int(P)
except possibly its endpoints. We call the horizontal
edge that sees all points in the histogram the base of
the histogram and denote it by base(H).

Lemma 2 Any anchored partition of a histogram is
a bsp.

2.1 A 3-approximation algorithm

We present a 3-approximation algorithm for the prob-
lem of finding an optimal rectangular partition. First
we split P into a set of histograms such that any
axis-parallel segment inside P stabs at most three his-
tograms. This can be done in O(n) time [5]. Then,
we compute an optimal rectangular partition for each
resulting histogram. By proving that this can be done
in polynomial time we will have the following result.

Theorem 3 Let P be a rectilinear simple polygon
with n vertices. Then we can compute a rectangular
partition of P with stabbing number at most 3 ·opt in
polynomial time, where opt is the minimum stabbing
number of any rectangular partition of P .

Let H be a histogram. With a slight abuse of no-
tation, we use n to denote the number of vertices
of H. We assume without loss of generality that H
is a vertical histogram lying above its base. By Lem-
mas 1 and 2, H admits an optimal partition that is
an anchored bsp. We need the following properties.

Lemma 4 There is an optimal partition Ropt for H
that is an anchored bsp and such that for every rect-
angle r ∈ Ropt we have

(i) the bottom edge of r is contained in either the top
edge of a single rectangle r′ ∈ Ropt or in base(H),
and

(ii) the top edge of r contains an edge of H.

(a) (b)

s
si

sj s`

1
2

31 1

41

11

2

1

2 1

3

Figure 1: (a) Partitioning a histogram using canonical
chords. (b) A partition with a unimodal labeling. The
label sequence of the chord s is 4, 3 and the label
sequence of the base is 1, 4, 3.

In the sequel all partitions have properties (i) and (ii)
from Lemma 4 (but not all are anchored).

Our algorithm will do a binary search for the small-
est value k such that H admits a partition with stab-
bing number k. Since there is always a partition with
stabbing number at most 2 log2 n [2], the binary search
needs O(log logn) steps. It remains to describe our de-
cision algorithm HistogramPartition(H, k), which
decides whether H has a partition with stabbing num-
ber at most k.

Canonical chords. A chord of H is a maximal hori-
zontal segment contained in the interior of H except
for its endpoints. A chord s partitions H into two
parts. The part above s is a histogram, denoted by
H(s). Any partition R of H induces a partition of
H(s), denoted by R(s). Now consider a partition of
H obtained by adding a chord from each vertex of H
for which this is possible. We call the resulting set
of chords the canonical chords of H (see Figure 1(a)).
We treat base(H) as a canonical chord.

The basic idea behind the algorithm is to treat the
chords from top to bottom. Now consider a chord
si with, say, two chords sj and s` immediately above
it. Here we say that a chord si is immediately above
another chord sj , if we can connect si to sj with a
vertical segment that does not cross any other chord.
One may hope that if we have optimal partitions for
H(sj) and H(s`) then we can somehow “extend” these
to an optimal partition for H(si). Unfortunately this
is not the case, since an optimal partition need not
be composed of optimal subpartitions. The next idea
is to compute all possible partitions for H(si). These
can be obtained by considering all combinations of a
possible partition for H(sj) and a possible partition
for H(s`). Implementing this idea naively would lead
to an exponential-time algorithm, however. Next we
show how to compute a subset of all possible partitions
that has only polynomial size and is still guaranteed
to contain an optimal partition.

Labeled partitions and label sequences. We first
introduce some notation and terminology. Let R be
any partition of H (having the properties (i) and (ii)
in Lemma 4). We say that a rectangle r ∈ R is on

104

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

top of a rectangle r′ ∈ R if the bottom edge of r is
contained in the top edge of r′. When the bottom
edge of r is contained in base(H) then r is on top of
the base. A labeling of R assigns a positive integer
label λ(r) to each rectangle r ∈ R. We say that a
labeled partition is valid (with respect to the stabbing
number k) if it satisfies these conditions:

• if r is on top of r′ then λ(r) < λ(r′);
• the vertical stabbing number of R equals the max-

imum label of any rectangle r ∈ R;
• the stabbing number of R is at most k.

Observe that the first two conditions together imply
that the stabbing number of R is equal to the maxi-
mum label assigned to any rectangle on top of base(H).
Also note that any partition with stabbing number
k has a valid labeling: for example, one can set λ(r)
to be equal to the maximum number of rectangles
that can be stabbed by a vertical segment whose lower
endpoint lies inside r. We will use the labelings to
decide which partitions can be ignored and which ones
we need to keep.

For a chord s of H, we define the label sequence of s
with respect to a labeled partition R as the sequence
of labels of the rectangles crossed by s, ordered from
left to right; here we say that s crosses a rectangle r if
s intersects int(r) or the bottom edge of r. We denote
this sequence by Σ(s,R); see Figure 1(b). A label
sequence is valid if it consists of at most k labels and
the maximum label is at most k. Note that a labeled
partition is valid if and only if the label sequence of
each of its canonical chords is valid. A label sequence
λ1, . . . , λt is called unimodal if there is an index i such
that λ1 6 · · · 6 λi and λi > · · · > λt. A labeling of a
partition is unimodal if the label sequence of any chord
is unimodal. A label sequence can be made unimodal
using the following procedure.

MakeUnimodal(Σ)
Let Σ = λ1, . . . , λt, and let λi∗ be a maxi-
mum label in the sequence. For each i < i∗

set λi := maxj6i λj , and for each i > i∗ set
λi := maxj>i λj .

The next lemma states that we can make the label
sequences of all canonical chords unimodal, and still
keep a valid sequence.

Lemma 5 Any anchored partition of H of stabbing
number at most k admits a valid unimodal labeling.

Dominated and non-dominated sequences. Next
we explain how the labelings help us decide which
partitions can safely be discarded. Consider an algo-
rithm that handles the chords from top to bottom,
and suppose that the algorithm reaches a chord s. Let
R1 and R2 be two labeled partitions of H(s). Suppose
that Σ(s,R1) is a subsequence of Σ(s,R2). Then there
is no need to keep R2: both partitions have stabbing

s s
3 111

1 1
2 3 1

r1 r2 r3 r4 =⇒

Figure 2: Merging two rectangles.

number at most k so far, and if we can complete R2

to a partition with stabbing number k of the full his-
togram H then we can do so with R1 as well. As
another example in which we can disregard one of
the two partitions, suppose that Σ(s,R1) = 1, 1, 3, 1
and Σ(s,R2) = 1, 2, 3, 1, and let r1, . . . , r4 be the four
rectangle in R1 reaching the chord s. Then we could
have merged r1 and r2 just before reaching s, that
is, we could have terminated r1 and r2 and start a
new rectangle with label “2”—see Figure 2. The new
subsequence is then 2,3,1. This is a subsequence of
Σ(s,R2), so we can disregard R2.

To make this idea formal, we say that Σ(s,R1) dom-
inates Σ(s,R2) if we can obtain a sequence Σ(s,R∗)
that is a subsequence of Σ(s,R2) by applying the fol-
lowing operation zero or more times to Σ(s,R1):

• Replace a subsequence λi, . . . , λj of Σ(s,R1) by
the single label “max(λi, . . . , λj) + 1”. Note that
we can have i = j; in this case the operation just
adds 1 to the label λi.

Intuitively, if a label sequence dominates another la-
bel sequence, then the first sequence has postponed
some merging operations that we can still do later
on. Thus there is no need to maintain partitions with
dominated label sequences. (Note that postponing a
merging operation implies that the resulting partition
may not be anchored. This means that in the algo-
rithm presented below, we do not restrict ourselves to
anchored partitions.) The next lemma gives a bound
on the number of label sequences in the worst case.

Lemma 6 Let S be any collection of valid unimodal
sequences such that no sequence in S dominates any
other sequence in S. Then |S| = O(23k/2/

√
k).

The algorithm. Our decision algorithm is as follows.

HistogramPartition(H, k)

1. Compute the set of canonical chords of H and
sort the chords by decreasing y-coordinate.

2. For each chord s in order, compute a collection
R(s) of labeled partitions of H(s), as follows.

(i) If H(s) is a rectangle then set R(s) := {H(s)}.
(ii) Otherwise s has one or more chords s1, . . . , st
immediately above it—see Figure 3. Find all
valid unimodal partitions of H(s) that can be
obtained from any combination of partitions in
R(s1), . . . ,R(st) and whose label sequence is not
dominated by the label sequence of any other
such partition. (This will be explained below.)

105

27th European Workshop on Computational Geometry, 2011

s1

s

s4

1 3 3 2 1 1 5 45 41

Σ = [1, 3, 3] 1 [2, 1] 1 [1, 5, 5, 4] 1 [1, 4] 1

s2 s3

making the sequence unimodal: 1,3,3,3,5,5,4,4,4,1
merging from the sides to

reduce the length of the sequence: 4,5,5,5

Figure 3: A chord s, the chords immediately above it,
and the label sequence Σ defined by the label sequences
of the chords.

Let R(s) be the set of all computed partitions. If
R(s) is empty, then report that no partition with
stabbing number k exists for H, and exit.

3. Return any partition in R(base(H)).

Next we explain how Step 2(ii) is performed. We as-
sume that t > 1, that is, that s has several chords
immediately above it; the case t = 1 can be handled
in a similar (but much simpler) way. In the sequel,
we identify each partition with its label sequence and
only talk about label sequences. Note that the op-
erations we perform on the label sequences can be
easily converted into the corresponding operations
on the partitions. For every pair of label partitions
R1 ∈ R(s1), Rt ∈ R(st) we proceed as follows.

(a) For each 1 < i < t, consider the set R(si). Note
that the label sequences in R(si) all have the
same maximum value, Mi. This is because a la-
bel sequence dominates any sequence with larger
maximum value. (The number of times the maxi-
mum label occurs can differ by at most one.) We
pick an arbitrary label sequence Σi ∈ R(si) for
which Mi occurs the minimum number of times.

(b) We now have, besides the partitions Σ1 ∈ R(s1)
and Σt ∈ R(st), picked a partition Σi from each
R(si) with 1 < i < t. Let Σ be the label sequence
obtained by concatenating the sequences Σi in
order, inserting a label “1” for any horizontal
histogram edge incident to a chord si, see Figure 3.
The labels “1” correspond to new rectangles whose
top edge is the given histogram edge. We then
make Σ unimodal. This is done using a variant of
the procedure MakeUnimodal explained earlier:
the difference is that if we give several consecutive
labels the same value, then we merge them into a
single new label—see Figure 3.

(c) If the number of labels in Σ is at most k, then we
put Σ into R(s). Otherwise Σ is invalid because
it contains too many labels, and we have to merge
some rectangles. This is done as follows.
Suppose that Σ contains k+x labels λ1, . . . , λk+x.
Then we have to get rid of x labels by merging.
Let xleft, xright be integers such that xleft+xright =

x+ 2 and both xleft, xright are non-zero, or xleft +
xright = x+ 1 and one of xleft, xright is zero. We
merge xleft labels from the left into one new label,
and xright labels from the right into one, as in
Figure 3. In other words, on the left side we
replace λ1, . . . , λxleft

by a single new label λxleft
+1

(and similarly on the right). If there are some
labels immediately to the right of λxleft

with the
same value as λxleft

, then we include them into
the merging process. (We can do this for free,
since it reduces the number of labels, without
increasing the value of the new label.) If this
merging process yields a new label whose value
is more than the previous maximum label value,
then we simply merge the entire sequence into a
single new label. If the value of this label is k+ 1,
then we discard the sequence.

After applying the above steps to every pair R1 ∈
R(s1), Rt ∈ R(st), we remove from R(s) all parti-
tions with a label sequence that is dominated by the
sequence of some other partition. We do this by com-
paring every pair of partitions, and checking in O(k)
time whether one dominates the other one. After
handling s, and for any partition of H(s) denoted by
R∗(s), the following lemma shows that the set R(s)
contains at least a partition dominating Σ(s,R∗).

Lemma 7 HistogramPartition(H, k) returns a
partition of H with stabbing number at most k if
exists.

The next lemma follows from Lemma 6, and the
fact that k 6 2 log2 n.

Lemma 8 HistogramPartition runs in polyno-
mial time.

References

[1] P.K. Agarwal, B. Aronov, and S. Suri. Stabbing
triangulations by lines in 3D. Proc. of 11th Symp. on
Comp. Geom. 267–276 (1995).

[2] M. de Berg and M. van Kreveld. Rectilinear decompo-
sitions with low stabbing number. Inf. Process. Lett.
4:215–221 (1994).

[3] B. Chazelle, H. Edelsbrunner, and L. J. Guibas, The
complexity of cutting complexes. Discr. Comput.
Geom. 6:139–181 (1989).

[4] J. Hershberger and S. Suri. A pedestrian approach
to ray shooting: shoot a ray, take a walk. J. Alg.
18:403-431 (1995).

[5] C. Levcopoulos. Heuristics for minimum decomposi-
tions of polygons. Linkoping Studies in Science and
Technology, Dissertations, No. 55, 1987.

[6] C.D. Tóth. Axis-aligned subdivisions with low stab-
bing numbers. SIAM J. Discrete Math. 22:1187–1204
(2008).

106

