
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A parallel GPU-based algorithm for Delaunay edge-flips

Cristobal A. Navarro∗ Nancy Hitschfeld-Kahler† Eliana Scheihing*

Abstract

The edge-flip technique can be used for transform-

ing any existing triangular mesh into one that satis-

fies the Delaunay condition. Although several imple-

mentations for generating Delaunay triangulations are

known, to the best of our knowledge no full parallel

GPU-based implementation just dedicated to trans-

form any existent triangulation into a Delaunay trian-

gulation has been reported yet. In the present work,

we propose a two-phase iterative GPU-based algo-

rithm, that transforms any 2D planar triangulations

and 3D triangular surface meshes into their respective

Delaunay form. We tested our method with meshes

of different size, and compared it with a sequential

CPU-implementation. Based on these results, our al-

gorithm strongly improves the performance with re-

spect to a classic CPU-implementation, thus making

it a good candidate for interactive/real-time applica-

tions.

1 Introduction

Delaunay triangulations are widely used in several ap-

plications because they present good properties that

make them useful in 2D and 3D numerical simula-

tions. In the last two decades there has been a consid-

erable amount of work done on computing Delaunay

triangulations, from different sequential implementa-

tions [9] to recently parallel ones [1], and in partic-

ular, GPU-based methods [8, 2]. These works be-

long to the case when a Delaunay triangulation needs

to be computed from a given set of points or from

an initial geometry and not from an existing triangu-

lation. On the other hand, transformation methods

for existing triangulations have relied on the edge-flip

technique first introduced by Lawson [7]. Though the

edge-flip technique is simple and the implementation

is straightforward, the order of the algorithm is O(n2)

in the worst case [6, 5] (where n refer the number of

points of the triangulation) making its performance

potentially slow for millions of triangles. The algo-

rithm of Rong et al. [8] uses the edge-flip operation,

but it is implemented on the CPU. Very recently, they

improved their method by implementing all the opera-

∗Informatics Institute, Austral University, Chile,

axischire@gmail.com, escheihi@inf.uach.cl
†Department of Computer Science, FCFM, University of

Chile, Chile, nancy@dcc.uchile.cl

tions in parallel [2]. The main differences with our ap-

proach are that our algorithm is more straightforward

and simple since it is only dedicated to transform any

triangulation into a Delaunay triangulation. In ad-

dition, Cao’s algorithm uses one thread per triangle

and needs to update more complex data structures.

Our algorithm uses on thread per-edge and the used

data structures are oriented for real-time rendering.

There is also another interesting article that describes

a parallel GPU-based algorithm designed to generate

triangulations for image reconstruction [3]. This al-

gorithm performs edge-flips in parallel according to a

function cost that depends on the treated image. If

the function is the Delaunay condition, then their al-

gorithm could be used for the purpose of our paper.

Their approach is also iterative and uses one thread

per edge, but uses different data structures which are

oriented to store regions of influence of each edge e

and the implementation is done with shaders.

The application that motivates our work is the

simulation of stem deformations. At each time, the

geometry of the triangulation changes and we want

to restore the Delaunay condition. Then we want

a restoration method capable to perform close to

interactive/real-time levels, executing on a desktop

workstation. The contribution of this work is a GPU-

based method that improves 2D and 3D triangula-

tions. This short paper is organized as follows: Sec-

tion 2 describes the data structures and Section 3 cov-

ers the algorithm and some implementation details.

In Section 4 we present results from different tests, to

finally discuss and conclude our work in Section 5 .

2 Involved data structures

Proper data structures have been defined to represent

a triangulation in order to use as efficiently as possi-

ble the GPU’s architecture. This representation is

inspired on the Dynamic Render Mesh [10]. Figure 1

illustrates the three main components: Vertices, Tri-

angles and Edges.

Vertices are handled via the Vertex array where each

element contains a position (x, y) or (x, y, z) depend-

ing on the dimension used. The Triangles array is a

set of indices to the vertex array where each three con-

secutive indices corresponds to a triangle. Each edge

contains a pair of vertex indices v1, v2 and two refer-

ences ta, tb to the triangles that share it (for bound-

ary edges, tb remains unused). Both ta and tb contain

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered 
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

75



27th European Workshop on Computational Geometry, 2011

t0

Surface Mesh S

Edges

Triangles

Vertices

p-2...

t1

A

0

n-2

0 2 4

A C B C

0

ta tb

tm-1

3m-3 3m-2 3m-1

A B C

...

n-1

...

... ... ...

A B C

tbta

1 2

B

v1 v2

v1 v2

1

ta tb

v1 v2

2

ta tb

v1 v2

p-3

ta tb

v1 v2

p-1

ta tb

v1 v2

51 3

Figure 1: Data structures for mesh render-

ing/processing.

a pair of indices that point to the exact indices on

the Triangles array where this edge can be found. In

other words, every edge can access its vertex data

directly through v1, v2 or indirectly via ta, tb. This

redundant information becomes useful for consistency

checking after an edge flip is performed nearby. The

data model was designed so that it could be naturally

implemented and integrated with the OpenGL API

and at the same time implementable on the CUDA

[4] architecture.

3 Algorithm Overview

Each iteration of the proposed algorithm is divided

in two phases: (1) Exclusion & Processing and (2)

Repair. The algorithm finishes when all edges fulfill

the Delaunay condition.

3.1 Exclusion & Processing

This phase is in charge of a double work: selecting

and flipping edges in parallel. It begins by testing

each edge against the Delaunay condition. If the con-

dition is fulfilled, then e is Delaunay and the execution

thread ends (d = 1), otherwise the thread continues

alive (d = 0). Figure 2 shows an example of a small

mesh (Se), where edge e does not satisfy Delaunay

condition. In this figure, edge e is the unique internal

edge of the mesh, thus the only one to be analyzed

(boundary edges are never flipped). This part of the

phase adjusts perfectly to the GPU architecture be-

cause each edge is an independent problem that can

be assigned to a unique thread.

Because of neighbor dependency problems, it is not

always possible to flip the complete set of d = 0 edges

in one iteration because the flip of a given edge e pro-

duces a transformation on the triangles (ti, tj) where

this edge belongs to. This transformation affects

directly the neighborhood information of the other

edges of the triangles that share e, making impossible

to flip those while e is being flipped. However, it is

d=1d=1d=0d=1d=1

T

Triangles

Edges

Vertices

T

1

0

0 3 2

a

ta

3

1 2

0

b

ta

0

d

ta

2

e

1 3

c

ta

1 23
13

0

2

3

1

T

T

1

tb

3

0 1 2 3 4 5

ta

1

0

10

a

d

e

b

c

Figure 2: On this mesh, e is the only one to flip.

T

0

T

1

T

2

T

5

T

4

T

3

a

b

c

Figure 3: The edge subset can either a,c or b,c.

possible to process a subset of edges A that fulfill the

following condition:

∀ e1, e2 ∈ A Te1
∩Te2

= ∅ where Te = {t ∈ T : e ∈ t}
(1)

In order to get a proper subset, we propose a parallel

exclusion mechanism in which each thread managing a

non-Delaunay edge (non-Delaunay edge thread), will

be allowed to flip its edge if it is the first one to make

a state transition from ”free” to ”taken” (binary flag)

on the two triangles that share it. Non-Delaunay edge

threads that could not catch their two triangles will

find the opportunity to flip their edge on future iter-

ations. Atomic operations are used in this exclusion

mechanism in order to avoid any race condition. Fig-

ure 3 shows a mesh, where edges a, b, and c need to be

flipped but they cannot be processed at the same time.

After applying condition 1, the resulting subset can

be either {a, c} or {b, c} but a and b will never be se-

lected together, because they share T2. We design the

per thread edge-flip method as an index exchange be-

tween the two triangles related to the processed edge

e. This transformation can be seen as a rotation of

the involved triangles fully independent from the rest

of the mesh. The transformation is done on the Tri-

angles array using the information ta and tb stored in

the Edges array by following the next steps:

76



EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

• Find the opposite vertex indices u1 and u2 of e

in the Triangles array going through ta and tb

(Edges array).

• Locate the position of the first common vertex

index c1 in the Triangles array going through ta.

• Locate the position of the second common vertex

index c2 in the Triangles array going through tb.

• Exchange data, by copying u1 into Triangles[c2],

and u2 into Triangles[c1].

• Update the values of ta, tb and v1, v2 related to

e in the Edges array.

Figure 4 illustrates the case of flipping the edge e from

the simple mesh Se (Figure 2) and how the rotation

transformation is achieved.

T ´'

4

T

e

T

10 31

0

2

3

u1

1

3

u2

0

2

3

1

0 21 3 5

0 32

0 21

T ´'

1 02

3 54

c1 c2

ta

0 2

tb

2

e

ta

1 3

tb

T

0

T

1

0

1

0

1

T

0

T

1

0

2

3

1

T

0

T

1

before

after

rotation / flip

e

e

e

Figure 4: The edge-flip as a rotation of triangles.

3.2 Repair

After the parallel edge-flips, consistency problems

might appear on the edges nearby a flipped edge.

More specifically, some neighbor edges can now store

references to triangles whom they do not belong any-

more (obsolete ta, tb indices). We say that an edge is

inconsistent when its vertex indices obtained through

ta, tb differ from the ones stored in v1 and v2 which

will always be the correct values. Therefore the edges

remain in the same original place but might belong

to different triangles ta, tb. In the following simple

mesh Se, inconsistent information appears at edges b

and d right after flipping e (Figure 5). The detection

and fixing of inconsistent edges can also be achieved

in parallel; Given an edge e, just compare the vertex

indices accessed via ta and tb against v1 and v2. If the

values are different, then search the correct values in

the indices of the triangle that were rotated together

with ta and tb. The information of the triangles that

were rotated together can be stored in the ”Exclusion

& Processing” phase as an array R[] where R[ti] = tj

and vice-versa.

0

Triangles

Vertexes

1

1

0

0 3 2 0

31 2

2

Edges

a

ta

0

b

ta

0

d

ta

2

e

0 2

c

ta

1 23
13

tb

0 1 2 3 4 5

ta

0

2

3

1

T

0

T

1

T T

e

Figure 5: Edges marked with a cross are inconsistent.

3.3 Handling problematic cases

During the first phase, there are two cases that we

should explain in more detail: (1) the handling of co-

circular configurations and (2) if it is possible that a

dead-lock might occur for some special cases.

We solve the case (1) using an ǫ value. For each

edge e, our algorithm uses the simple Delaunay rou-

tine that computes the angles λ and γ opposite to e

from the triangles that share e and checks the follow-

ing condition:

λ + γ ≤ π + ǫ (2)

If the condition is true, the edge e fulfills the Delau-

nay condition. Otherwise is a candidate to be flipped.

Since our algorithm does not flip edges whose triangles

are defined by co-circular or almost co-circular ver-

tices, each chain of edge-adjacent triangles forming a

cycle must have an edge that fulfill the Delaunay con-

dition. This is the smallest edge of the chain. Then,

in a chain like this there will be at least one edge than

can be flipped: one of the edges that belongs to one

of the two triangles that share the smallest edge. We

are working on a formal demonstration for this case.

4 Evaluation and results

The hardware used for testing our algorithm consists

of an AMD Phenom Quad 2.7GHZ CPU, and two

GPUs: Geforce 9800GTX+ and GTX 580. In the

following, we call our method MDT (Massive Delau-

nay Transformations). Tests were done with both 2D

and 3D surface triangulations. Figure 6 shows the

performance of the algorithm for 2D random gen-

erated triangulations of a quad but with different

number of triangles. These random triangulations

were generated using Blender (subdivision and noise).

We also added interactive and real-time time thresh-

olds as good performance reference values. On the

77



27th European Workshop on Computational Geometry, 2011

9800GTX+, the performance is good for meshes of

less than one million triangles but not so good for

larger meshes. On the other hand, the GTX 580 per-

forms considerably better as expected, making possi-

ble real-time Delaunay transformations on very large

triangulations. We have also evaluated MDT with 3D

Figure 6: Performance on different architectures.

surface triangulations such as the dragon (Stanford

Computer Graphics Laboratory), the horse (Cyber-

ware Inc), a moai (Geomview) and the infinite built

with our custom tools. Table 1 compares the MDT

running on the GTX 580 with a locally built sequen-

tial CPU-implementation.

Table 1: Performance comparison of 3D surface

meshes.

Mesh # edges CPU-Method [s] MDT [s]

Moai 30,000 0.867 0.001

Horse 337,920 15.942 0.012

Dragon 1,309,256 0.387 0.046

Infinite 4,758,912 274.1 0.157

5 Discussion and Conclusions

Our preliminary results show that MDT can become

a practical and useful algorithm for modern dynamic

and interactive/real-time applications that need to

handle all time a Delaunay mesh. Our GPU-based

solution scales very well on newer GPU architectures.

The algorithm has also no deep complexity and the

data structures are 100% compatible with modern

Graphics APIs. MDT is best suited for large meshes

composed by at least thousands of edges and most of

the times the transformation is achieved with few it-

erations. We have also tested MDT with one of the

worst case meshes for the sequential algorithm [5]. In

this case, MDT presents a particular behavior maxi-

mizing the number of parallel edge-flips in the middle

iterations instead of in the first ones as with the other

tests. In the near future, we want to analyze precisely

the behavior of our algorithm and to compare its per-

formance with the approaches mentioned above.

6 Acknowledgments

We would like to thank to the anonymous reviewers of

the ACM ToG journal and EuroCG2011 for the very

useful comments on how to improve our work.

References

[1] C. Antonopoulos, X. Ding, A. Chernikov,

F. Flagojevic, D. Nikolopoulos, and N. Chriso-

coides. Multigrain parallel delaunay mesh gen-

eration: challenges and opportunities for multi-

threaded architectures. In ICS ’05 proceedings,

pages 367–376, New York, NY, USA, 2005. ACM.

[2] T. T. Cao. Computing 2d delaunay triangulation

using gpu. Manuscript in preparation, 2010.

http://www.comp.nus.edu.sg/ tants/delaunay2D

Download.html.

[3] M. Cervenanský, Z. Tóth, J. Starinský, A. Ferko,

and M. Srámek. Parallel gpu-based data-

dependent triangulations. Computers & Graph-

ics, 34(2):125–135, 2010.

[4] N. Corporation. NVIDIA CUDA Compute Uni-

fied Device Architecture - Programming Guide,

2007.

[5] H. Edelsbrunner. Geometry and topology for

mesh generation (cambridge monographs on ap-

plied and computational mathematics), 2001.

[6] S. Fortune. A note on delaunay diagonal flips.

Pattern Recognition Letters, 14(9):723 – 726,

1993.

[7] C. L. Lawson. Transforming triangulations. Dis-

crete Mathematics, 3(4):365 – 372, 1972.

[8] G. Rong, T.-S. Tan, T.-T. Cao, and Stephanus.

Computing two-dimensional delaunay triangula-

tion using graphics hardware. In I3D ’08 proceed-

ings, pages 89–97, New York, USA, 2008. ACM.

[9] J. R. Shewchuk. Triangle: Engineering a 2d qual-

ity mesh generator and delaunay triangulator. In

First Workshop on Applied Computational Ge-

ometry, pages 124–133. ACM, 1996.

[10] R. F. Tobler and S. Maierhofer. A Mesh Data

Structure for Rendering and Subdivision. Plzen,

Czech Republic, 2006.

78




