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The Traveling Salesman Problem with Differential Neighborhoods
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Abstract

We introduce a novel differential approach to the Traveling
Salesman Problem with Disk Neighborhoods (TSPDN), in
which each node may be relocated within radius r from
the original location in order to decrease the length of the
shortest tour visiting all nodes. When r is small com-
pared to the distance between the nodes, the optimal so-
lution to the TSPDN is achieved by shortening the cycle
corresponding to the optimal TSP tour without reordering
the nodes. Looking at the shortening rate of a cycle, de-
fined as the ratio of the decrease in tour length to r when
r tends to zero, gives us an insight on how the movement
of nodes can be converted into savings in tour length. We
study the optimal direction for shortening and show how
the shortening rate relates to the tightness of turns, number
of U-turns and the distance from the origin in Euclidean,
Manhattan and hyperbolic metrics, respectively.

1 Introduction

A natural generalization of the Traveling Salesman Prob-
lem (TSP) is the TSP with neighborhoods (TSPN): given
a collection of n regions (disks, rectangles, lines, . . . ), the
goal is to find a shortest tour that visits all of them [2, 5].

In this work, neighborhoods are defined as disks cen-
tered at the initial locations of nodes to be visited by the
salesman and the radius r of the disks denotes the max-
imum distance each node can be shifted in order to de-
crease the total tour length. We may equivalently think
that there are n customers and r denotes the maximum dis-
tance each customer can walk to meet the salesman. We
are interested in studying the effect of relocating nodes on
total tour length, by comparing the optimal TSP tour to the
solution of the TSP with disk neighborhoods (TSPDN).

While the absolute difference between the solutions to
TSP and TSPDN is clearly increased with r, the most ef-
ficient “steps” are taken when r is small. This is seen to
be true also for arbitrary cycles, consisting of a finite num-
ber of nodes, that are shortened by shifting each node a
distance r in the optimal direction. We examine the short-
ening rate of a cycle, defined as the ratio of the decrease
in the length of the cycle to r when r → 0. This approach
is in fact similar to discrete curve shortening flow models
presented in [3, 12, 16, 18]. Most of these works focus on
the asymptotic behavior of polygons that evolve according
to a specific shortening flow (see section 1.1). In contrast
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to these models, we assume that all nodes move at equal
“speed”, that is, r is equal for each node, and focus on
the optimal direction for shortening and the correspond-
ing maximum shortening rate. By shifting the nodes in an
optimal TSP tour a differential distance dr in the optimal
direction, we achieve an optimal solution to the TSP with
differential neighborhoods.

The main contributions are Theorems 3, 4 and 5, which
characterize the optimal direction for shortening and the
shortening rate in arbitrary cycles in different metrics: The
shortening rate is dependent on the sharpness of turns in
the Euclidean metric, number of U-turns in the Manhat-
tan metric and the distance from the origin in the hyper-
bolic metric. Furthermore, we derive global bounds for
the shortening rate in arbitrary cycles and upper bounds
for the shortening rate in optimal TSP tours.

This work is partially motivated by different types
of vehicle routing problems, where the shortening rate
translates to the available savings in mileage given the
nodes (goods, passengers, customers of a mobile service
provider) are shifted in optimal directions.

Proofs are omitted due to space limitations. However,
we give a short description of each proof.

1.1 Related work

In the Group-TSP [7], also known as the One-of-a-Set-
TSP [14] and the Errand Scheduling problem [17], a sales-
man has to meet n customers, to each of which is asso-
ciated a set of at most k possible meeting places. If the
weights are symmetric, the optimal solution can be poly-
nomially approximated with ratio 3k/2 [17].

The Group-TSP in which the neighborhoods are con-
nected regions in the plane is referred to as TSP with
neighborhoods (TSPN). In [11], a polynomial time algo-
rithm with approximation ratio O(n2 log n) for the general
TSPN is provided, where n is the number of neighbor-
hoods. In [2], constant factor approximation algorithms
are presented for special cases in which the neighborhoods
are defined as parallel unit segments, translations of con-
vex polygonal neighborhoods and circles. These results
are extended in [6] to neighborhoods with comparable di-
ameter, unit disks, and infinite lines. In [11], a polynomial
time approximation scheme (PTAS) is introduced for the
special case where the tour is short compared to the size
of the neighborhoods. In [15], a PTAS for the TSPN with
disjoint fat regions in the plane is presented.

In addition to the TSPN, our approach is closely related
to curve shortening flow [8, 9, 4], in the Euclidean version
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of which the length of a closed continuous curve is de-
creased by shifting each point on the curve along the nor-
mal vector at a rate proportional to curvature. This method
shrinks the length of a curve as fast as possible using only
local information [10].

The results obtained in the curve shortening literature
have motivated research in creating discrete analogues of
the flows [18]. Reference [3] introduces a linear poly-
gon shortening flow where each vertex chases the cen-
troid of its two neighboring vertices, which shrinks poly-
gons to elliptical points. In addition, [3] proposes a Eu-
clidean polygon shortening scheme based on the Menger-
Melnikov curvature [13]. In [12] it is shown that in this
case most quadrilaterals shrink to circular points. In [16], a
discrete curve shortening equation is formulated such that
the perimeter of the polygon is monotonically decreasing.

For the linear polygon shortening flow, proposed in [3],
it is shown in [18] that 1) polygons shrink to elliptical
points, 2) convex polygons remain convex, 3) if vertices
are arranged in a star formation about their centroid, they
will remain in a star formation for all time and 4) the
perimeter of the polygon is a monotonically decreasing
function of time. In addition, the authors derive the op-
timal direction for perimeter shortening.

2 Preliminaries

In the following, S = (s1, . . . , sn) denotes a cycle of
n distinct nodes in a metric space (X, d) and |S | =∑n

i=1 d(si−1, si) (mod n) denotes the length of the cycle
with respect to metric d. S (P) denotes the cycle corre-
sponding to the optimal solution to the classical travel-
ing salesman problem with the node set P = {p1, . . . , pn}.
Moreover, LS (r) denotes the minimum length of all cycles
(q1, . . . , qn) for which d(qi, si) ≤ r for all i.

If the nodes of the problem are relatively far apart from
each other compared to r, the TSPDN may be solved up to
optimality by improving the optimal center tour (the solu-
tion to the TSP) without reordering nodes. In this case, we
say that the set of nodes is r-stable.

It is easy to see that any fixed node set for which the
minimum distance between two nodes is ε > 0, will be-
come r-stable when r is decreased (see Figure 1).
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Figure 1: Stability of TSPDN. The solid lines represent
the optimal solution to the classical TSP (center tour) and
the dashed lines represent the optimal solution to the r-
TSPDN. As r is decreased, the two solutions converge.

In this work, we focus on the difference between TSP
and TSPDN when r tends to zero. Thus, the optimal or-
dering of the TSP is preserved.

3 Analysis

The shortening rate in a cycle S is defined by −L′S (0) =

limr→0
LS (0)−LS (r)

r , which is equal to the decrease in the
length of the cycle, relative to the differential radius of the
neighborhoods. L′S (0) corresponds to the change in the
length of S when each customer takes a differential step
dr in the optimal direction. Note that −L′S (0) ≥ 0, since
LS (r) ≤ LS (0) due to the fact that the nodes of the cen-
ter tour LS (0) are always included in the neighborhoods
of radius r ≥ 0. A large absolute value of L′S (0) means
that the shortening rate is significant. In the following, we
will study the shortening rate in arbitrary cycles with Eu-
clidean, Manhattan and hyperbolic metrics.

3.1 Global bounds

Theorem 1 Let S = (s1, . . . , sn) be a cycle in a metric
space (X, d). Then, LS (0) − LS (r) ≤ 2nr for all r ≥ 0.

Theorem 1 states that no cycle can be shortened by more
than than twice the total walking distance of customers.
This is proved by adding a detour of at most 2r from each
optimal meeting location to the original location. For the
case studied in [6], in which the neighborhoods are defined
as unit disks, the theorem can be applied as follows: For
disjoint unit disks, Theorem 1 implies LS (0) − LS (1) ≤
2n ≤ LS (0). By looking at the corresponding inequality
derived from [6], namely LS (0)−LS (1) ≤ |LS (0)| 8+8π/LS (0)

π+8 ,
it can be seen that our result improves this bound whenever
the length LS (0) of the center tour satisfies LS (0) < 8.
For arbitrary unit disks, we derive from [6] the inequality
LS (0) − LS (1) ≤ |LS (0)| π+7+10π/LS (0)

π+8 . Our upper bound 2n
improves this result whenever 2n < LS (0) < 10π.

Consider next the corresponding lower bound for
LS (0) − LS (r). For all cycles visiting n ≥ 2 disks centered
on a straight line, of which at least two are disjoint, we
have LS (0) − LS (r) = 4r. For the general case, we obtain
the following result by considering a minimum bounding
circle of radius R and scaling it down by (1 − r

R ).

Theorem 2 Let S = (s1, . . . , sn) be a cycle in R2 satisfy-
ing maxi, j∈{1,...,n} ‖si − s j‖ ≥ 2r ≥ 0. The minimum length
LS (r) satisfies LS (0) − LS (r) ≥ 4r in the Euclidean (L2)
and Manhattan (L1) metrics.

3.2 Euclidean metric

In [18], it has been shown that for a planar Euclidean cy-
cle, the optimal direction for differential perimeter short-
ening is towards the bisector of the angle between two sub-
sequent legs of the cycle. In the following, we examine
the corresponding shortening rate assuming that all nodes
move at equal speed in the optimal direction.
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Theorem 3 Let S = (s1, . . . , sn) be a cycle in R2 with an-
gles αi at corner si. In the Euclidean metric, the shortening
rate of S is given by the formula −L′S (0) = 2

∑n
i=1 cos αi

2 .

This result, which is proved by considering a sequence
of intermediate cycles, states that the shortening rate de-
pends only on the angles between subsequent legs of a cy-
cle. Assuming that the angles in a cycle S are uniformly
distributed between 0 and π, the expected shortening rate
in the cycle is given by E(−L′S (0)) = 2n

∫ π

0
1
π

cos α
2 dα ≈

1.273n. Furthermore, since 2 cos 60◦ = 1, it can be stated
that if the angle corresponding to a node i in a cycle is less
than 120◦, then the improvement in the length of the cycle
achieved by relocating i is asymptotically greater than the
walking distance r.

3.3 Manhattan metric (L1-norm)

Definition 1 A sequence of nodes (sh, sh+1, . . . , sk) in a
cycle S = (s1, . . . , sn) = ((x1, y1), . . . , (xn, yn)) (mod n) in
R2 is a U-turn with respect to x if xh = xh+1 = . . . = xk and
sgn(xh − xh−1) = sgn(xk − xk+1) , 0.

A U-turn with respect to y is defined similarly. Two U-
turns X and Y are called disjoint, if X ∩ Y = ∅. The fol-
lowing theorem establishes a relation between the number
of U-turns and the shortening rate.

Theorem 4 Let S = (s1, . . . , sn) be a cycle in R2 and let
M denote the minimum depth of U-turns in S . If r < M/2,
the length of the cycle in the Manhattan metric satisfies
LS (0) − LS (r) = 2U(S )r, where U(S ) is the maximum
number of disjoint U-turns in S .

This result is proved similarly as Theorem 3. For disjoint
disk neighborhoods of radius r, the contribution of each
U-turn on the decrease of the length of a cycle is 2r. If all
nodes are U-turns, a cycle can be shortened by 2nr, which
is an upper bound for all cycles. Differentiating the result
yields the shortening rate −L′S (0) = 2U(S ). For example,
the expected shortening rate for a random cycle S in R2

equals E(−L′S (0)) = 2 · 3
4 = 3

2 n.
Clearly, the shortening rate is invariant to linear trans-

formations since the number of U-turns depends only on
the signs of the differences between subsequent nodes.
More precisely, applying a linear function f (x, y) = (ax +

bxx, ay + byy), where bx, by , 0, on the points of any cycle
will not affect the number of U-turns.

Example 1 The expected number of U-turns in a random
cycle S in [0, a]× [0, b] ∈ R2, consisting of n nodes equals
E (U(S )) = n

ab

∫ b
0

∫ a
0 P(U | x, y) dxdy = 8

9 n. The expected
shortening rate thus equals E(−L′S (0)) = 16

9 n ≈ 1.78n,
independent of the ratio of a to b.

For a random cycle S in an ellipse with half axes a
and b, we get E(−L′S (0)) = n

6

(
11 − 2

π2

)
≈ 1.80n. Again,

E(−L′S (0)) is independent of the eccentricity of the ellipse.

(x, y)
A1 A2

A4A3

a

b

(x, y)A1 A2

A4A3

a

b

Figure 2: Illustration of Example 1. The probability that
a node located in (x, y) is a U-turn in a random cycle is
given by P(U | x, y) = 1 − 2

(A1+A2+A3+A4)2 (A1A4 + A2A3).

3.4 Hyperbolic metric

Figure 3: The TSPDN in the Poincaré disk model. The
solid and dashed lines represent the optimal center tour
and a solution to the TSPDN, respectively.

In hyperbolic geometry, all postulates of Euclidean ge-
ometry are satisfied except the parallel postulate. In the
Poincaré hyperbolic disk [1], the hyperbolic distance be-
tween two points u, v in the unit disk is defined by the for-
mula d(u, v) = arccosh

(
1 +

2‖u−v‖2

(1−‖u‖2)(1−‖v‖2)

)
, where ‖ · ‖ de-

notes the Euclidean norm. If ‖u‖ and ‖v‖ are small, d(u, v)
can be approximated by 2 ‖u − v‖. The hyperbolic disk
neighborhood with hyperbolic radius ρ ≥ 0 of a node u
consists of points v for which d(u, v) ≤ ρ. Note that the hy-
perbolic disk corresponds to a disk in the Euclidean plane,
but the Euclidean center of the disk is different from the
hyperbolic center u unless u = (0, 0) (see reference [1]).
Let us consider a solution to the hyperbolic TSPDN ob-
tained by shifting each node in the optimal center tour an
equal hyperbolic distance ρ towards the origin (see Figure
3), which gives us a lower bound for the shortening rate.

Theorem 5 Let S = (s1, . . . , sn) be a cycle in the unit disk
and ri = ‖si‖ for i ∈ {1, . . . , n}, where ‖ · ‖ denotes the
Euclidean metric. The shortening rate of S in the hyper-
bolic metric satisfies −L′S (0) ≥

∑n
i=1(ri+ri+1)

(
1 − |ri−ri+1 |

‖si−si+1‖

)
,

where sn+1 = s1 and rn+1 = r1.

This result is proved by differentiating the hyperbolic
length of leg (si, si+1) with respect to r. If all nodes are
located at an equal Euclidean distance x from the origin,
we have −L′S (0) ≥

∑n
i=1 2x = 2xn. Since by Theorem

1, the shortening rate always satisfies −L′S (0) ≤ 2n, our
approximate solution is asymptotically optimal when the
nodes approach the border of the unit disk.

53



27th European Workshop on Computational Geometry, 2011

Corollary 6 Let S 2, S 3, . . . be a sequence of cycles of n
nodes, where S j = ((1 − 1/ j, θ1), . . . , (1 − 1/ j, θn)) in po-
lar coordinates for all j ≥ 2. Then, lim j→∞ −L′S j

(0) = 2n.

3.5 Bounds for TSP tours

The shortening rate is generally governed by the tightness
and number of turns in a cycle. In some cases, even the
optimal TSP tour includes relatively tight turns. We state
the following for Euclidean TSP tours in the plane.

Conjecture 1 Let P be a node set in R2 involving n > 2
customers. The length of the shortest tour S (P) satisfies
LS (P)(0) − LS (P)(r) ≤

√
3nr in the Euclidean metric.

While the inequality in Conjecture 1 has not been proven
to be valid, there exist no known problems P for which
−L′S (P)(0) >

√
3n. The equality is achieved for n = 3 with

an equilateral triangle. In addition, it is possible to con-
struct a sequence of problems that asymptotically satisfies
the equality. For Manhattan TSP tours in the plane, the
upper bound is equal to that of arbitrary cycles.

Theorem 7 There exists (i) a sequence of problems
P4, P6, P8, . . . such that limk→∞

1
2k (−L′S (P2k)(0)) =

√
3 in

the Euclidean metric and (ii) for any r ≥ 0 a sequence of
problems P4, P12, P20, . . . such that LS (Pn)(0) − LS (Pn)(r) =

2nr for all n = 4(2k − 1), k ∈ N in the Manhattan metric,
where |P j| = j for all j ∈ N.

π
3

π
3 + 2π

k
a

a

a cos θ1

a sin θ1a

Figure 4: Theorem 7. The left figure shows a structure
in which the shortening rate per node in the optimal Eu-
clidean solution approaches

√
3 as n → ∞. The right

figure shows an optimal Manhattan TSP tour where each
node is a U-turn and the cycle can be shortened by 2nr.

Theorem 7 suggests that optimal Manhattan TSP tours
may be shortened more efficiently than Euclidean TSP
tours. In the hyperbolic metric, we know by Corollary 6
that for any sequence of cycles where the nodes approach
the border of the unit disk, the shortening rate converges
to 2n. In this case, our solution approach to the hyperbolic
TSPDN converges to the optimal solution.

4 Conclusions

In this work we study the difference between the length of
an optimal TSP tour and the length of the optimal solution
to the TSP with disk neighborhoods, in which each node
can be redirected to a new location within a certain radius

r from the original location. We show that the shortening
rate is characterized by the tightness of turns in the Eu-
clidean metric and it is equal to two times the number of
U-turns with respect to the coordinate axes in the Manhat-
tan metric. In the hyperbolic metric, the shortening rate
increases with the distance of nodes from the origin.
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