
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Geometric Motion Planning: Finding Intersections

Sándor P. Fekete∗ Henning Hasemann∗† Tom Kamphans∗‡ Christiane Schmidt∗

Abstract

We investigate a new model for mobile agents: Motion
planning with geometric primitives, similar to ruler-
and-circle constructions in classical geometry. In this
first paper on this subject, we consider finding in-
tersection points between two geometric objects us-
ing mobile agents that move on these objects. This
amounts to finding the rendezvous point of the two
agents.

1 Introduction

Algorithms for planning motions for mobile agents
have been studied thoroughly in the past decades,
both in computational geometry and in the robotics
community. Such an algorithm relies on a set of primi-
tives for motion, sensors, and communication that can
be performed directly by the agent. Usually, the set
of motion primitives models the agent’s basic capa-
bilities, most commonly are the primitives move and
turn. As these basic motions are prone to error, it is
worth investigating other models (i.e., set of motion
primitives).

In this work, we introduce a new model for mo-
bile agents. We assume that the agents are capa-
ble of performing geometric primitives, such as move
towards another agent, move on a circle, follow the
ray that is defined by agent a and agent b. That is,
the agents are able to perform constructions similar
to ruler-and-circle constructions in classical geome-
try (without marking trajectories). This model raises
two questions: What can we achieve using this model?
and How can we implement such geometric primitives
given, for example, a real robot? In this first work on
this subject, we focus on one particular aspect of the
first question: determining the intersection point of
two agents following a trajectory that is modeled by
a simple geometric object.

Related Work
Search and rendezvous problems have been considered
in many settings (e.g., [1, 5, 2]). Other models for
mobile agents have been presented by defining mini-
mal capabilities and investigating solvable tasks and

∗Algorithms Group, Braunschweig Institute of Technology,
Germany. http://www.ibr.cs.tu-bs.de/alg
†Supp. by 7th Framework Progr. contr. 258885 (SPITFIRE)
‡Supp. by 7th Framework Progr. contr. 215270 (FRONTS)

hierarchy relations among different models [8, 4, 7].
Although our search space is a torus in some cases,
we do not consider rendezvous on a torus as in [6].

Model
In general, we are given a swarm of non–point-shaped
agents. Each agent has perfect communication capa-
bilities, but only limited vision and restricted motion
abilities. Motion is limited to a set of primitives that
resemble moving on geometric objects.

In our case, we consider two agents with the motion
primitives: Move distance d on a circle and Move
distance d on a given curve.

2 Finding Intersections

We are interested in tasks that can be accomplished
using our model. A useful building block for mod-
eling complex tasks is to determine the intersection
point between two geometric object. This amounts to
finding rendezvous strategies for the agents moving
on these objects.

Let C1 and C2 be two curves in the plane of lengths
`1 and `2, respectively; A1 and A2 be the agents fol-
lowing C1 and C2, respectively. Note that we also al-
low open curves of unbounded length. As the agents
are not point shaped, we can safely assume that the
agent’s minimum travel distance is its diameter (with
one exception: In the case of closed curves when the
agent returns to its start position after driving around
the whole curve, we allow a move with smaller step
width). Thus, we have a discrete search space. Trans-
forming the possible positions of the agents into the
plane (projecting the positions of A1 along the X-
axis, those of A2 along the Y-axis) yields an integer
grid. The initial position of the agents is defined as
S := (0, 0). The topology of the grid depends on
whether the curves are closed or not: Two open curves
define a disk, one open and one closed curve define a
cylinder, and two closed curves define a torus. Now,
finding the intersection point of C1 and C2 amounts
to finding the (first) point T := (x, y) on this grid
where the agents meet.

Baeza-Yates et al. [3] considered searching on an
infinite integer grid. They showed that any online
strategy for finding a point within distance at most k
(in L1-metric) requires at least 2k2 +O(k) steps and
presented some strategies that achieve this bound. We
use the strategy NSESWSNWN, see Figure 1(ii), for

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

189

27th European Workshop on Computational Geometry, 2011

A2

A1

(i) (ii) (iii)

A1

A2

Figure 1: (i) Rendezvous space, (ii)/(iii) Search space.
Strategies for (ii) L1 (NSESWSNWN), (iii) L∞.

our search. The strategy proceeds by successively vis-
iting all points within distance k, which lie on a dia-
mond around the origin; it requires 2k2 +5k+2 steps.
Note that after visiting every point within distance
k − 1, the strategy needs just 4k + 3 additional steps
to visit every point within distance k. Although there
is a slightly better strategy, we prefer NSESWSNWN
because it produces a symmetric search path.

2.1 One-Dimensional Agents

In this section, we consider agents that move on a
given curve. For now, the agents are one dimensional;
that is, they extend only along the curve. Imagine a
snake-like robot following a trail. Further, the agents
do not move simultaneously.

2.1.1 Closed Curves of Equal Length

Theorem 1 Let C1 and C2 be two curves of length `.
Any algorithm that finds the intersection at distance
at most k needs at least
(i) 2k2 + 2k − 4 steps (for k < n = d`/2e),
(ii) 2n2+4zn+2n−2z2−2z−4 steps if n < k, k = n+z.

Proof. Any algorithm must visit every point at dis-
tance ≤ k. Visiting m points takes m − 1 steps. For
k = 0 we have one point. Each diamond of size k has
4k points; thus, we have 1 +

∑k
i=1 4i = 2k2 + 2k + 1

points for k ≤ n. Beyond n, the number of points
per diamond shrinks. Let z = k − n, then we have
4(n − z) points per diamond, which yields a total of
2n2 +2n+1+

∑z
i=1 4(n− i) = 2n2 +4zn+2n−2z2−

2z + 1 points. �

Theorem 2 Let C1 and C2 be two intersecting,
closed curves of length ` and let A1 and A2 be two
mobile agents moving on C1 and C2, respectively. Let
k be the distance to the (closest) rendezvous point, T ,
of A1 and A2. For finding T , the agents need at most
(i) 2k2 + 5k + 2 steps if k ≤ n,
(ii) 2n2+4zn+7n−2z2−3z+2 steps if n < k, k = n+z.

Proof. We use the following rendezvous strategy: We
use the NSESWSNWN strategy to explore the search
space, until we meet a point that was already explored
before. This happens when two tips of the diamond
touch each other, because the search space is a torus.

b

C

A B

D

(i)

b

a

b

a

D C

B A

(ii)

a

b

a

b

C

(iii)

b
D C

B A

(vi)
b

a

a

A B

D

b

a

a

Figure 2: (i) and (iii) searching a diamond with NS-
ESWSNWN until b is visited twice. (ii) and (iv) exploring
the remaining diamond. (i) and (ii) show the case for even
n, (iii) and (iv) for odd n. The gray dots show the end of
one round.

Now we searched a diamond-shaped area and are left
with four unsearched triangles, see Figure 2(i). As the
search space is a torus, these triangles are connected
and form, in turn, another diamond if seen from a
different viewpoint, see Figure 2(ii). Thus, we search
this diamond with a similar strategy, but starting with
the outer layer and proceeding towards the origin of
the diamond. Let n be the round when we switch
the strategy and k be the current round (that is, we
want to explore every point within distance k). When
switching the strategies, we need 2n additional steps
to move from b to the start of the next round if n
is even, one step if n is odd. Let S(k) be the total
number of steps after finishing round k.
For k ≤ n we have S(k) = 2k2 + 5k + 2.

For n < k < 2n, k = n+ z, we have 4(n− 1− z) + 3
additional steps per layer. Altogether, we have
S(k) ≤ 2k2 + 5k + 2 + 2n+

∑z
i=1 4 (n− i− 1) + 3

= 2n2 + 4zn+ 7n− 2z2 − 3z + 2
�

2.1.2 Closed Curves of Different Length

If the curves have different sizes, the search space is
no longer a square projected onto a torus. This means
that the expanding diamonds begin to overlap in one
dimension, while the other dimension is not yet ex-
plored in its total width, see Figure 3.

Let point a be the point where the expanding dia-
monds touch and let n be the layer in which we reach
a. Let m be the layer where b is met.

190

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Theorem 3 Let C1 and C2 be two curves of length
`1 and `2 (`1 < `2), respectively, n = d`1/2e,m =
d`2/2e. Any algorithm that finds the intersection at
distance at most k needs at least
(i) 2k2 + 2k − 4 steps if k ≤ n,
(ii) 2n2+2n+z′(4n+2)−4 steps if n < k = n+z′ ≤ m,
(iii) 4mn−2n2+4nz−2z2−2z+2m−4 steps if k = m+z.

Proof. Part (i) is the same as in Theo. 1. Beyond the
n-diamond, we have z′ = k− n 〈 〉-shaped layers with
4n+ 2 points each. For (iii), we have the points from
Case (ii) with z′ = (m−n) and add

∑z
i=1 4(n−i). �

Theorem 4 Let C1 and C2 be two intersecting,
closed curves of length `1 and `2, respectively. Let
A1 and A2 be two mobile agents moving on C1 and
C2, respectively. Let k be the distance to the (closest)
rendezvous point, T , of A1 and A2. For finding T , the
agents need at most
(i) 2k2 + 5k + 2 steps if k ≤ n,
(ii) 6n2 + 7n+ 2j(n+ 3) + 4nz′ + 2j − 2 steps

if n < k = n+ z′, 2j−1 < z′ ≤ 2j ,
(iii) 5mn+ n2 + 4nz − 2z2 − 2z + 4n+ 3m+

+2 log(m− n)− 2 if k = m+ z.

Proof. As above, we start with the NSESWSNWN
strategy, until we complete layer n and are located at
point b′. Now we switch the strategy. First, we return
to a. Then we alternatingly search the areas left and
right to the explored diamond, using a stairway-like
search pattern, as shown in Figure 3. To keep the
relocation costs low, we use the doubling paradigm;
that is, we double the exploration depth each time we
switch sides. We continue until we reach point b, from
where we use the inverse NSESWSNWN strategy, as
described in the preceding section.

To visit every point within distance k, n < k < m,
k = n+z, we choose j such that 2j−1 < z ≤ 2j . Up to
b′, we need 2k2+5k+2 steps as above. The move from
b′ to a costs 2n. Then we explore up to a depth of 2j

using doubling. For doubling step j, we move from
a to the point at which we ended after doubling step
j − 2 (plus one step to reach the position for the new
stairway), incurring a cost of 2j−2 +1. Then we move
on the stairways. Note that each stairway covers two
layers; thus, we explore 1

2 (2j−2j−2) stairways with 4n
steps each. Afterwards, we use 2j+1 steps to return to
a. Note that we do not need additional steps between
two stairways. Thus, we have for n < k ≤ m:
S(k) = 2n2 + 5n+ 2 + 2n+ 4n+ 4 for j = 1
S(k) = 2n2 + 5n+ 2 + 2n+ 12n+ 10 for j = 2
and for j > 2:
S(k) ≤ 2n2 + 5n+ 2 + 2n (from (i) and move to a)

+4+6+
∑j
i=3(2i+2i−2+2)+2j−1+1 (relocation

costs)

+4n
(

1 + 2 +
∑j
i=3(2i−1 − 2i−3)

)
+4n(k−2j−1)

(stairways)
= 6n2 + 7n+ 2j(n+ 3) + 4nz′ + 2j − 2

b

j=1j=2

b’ b

a

a

Figure 3: NSESWSNWN and stairways.

After visiting the stairways with the doubling tech-
nique, we use an inverse NSESWSNWN strategy as
in Case (ii) of Theorem 2. For convenience, assume
m = n+2j and let k = m+z. We add

∑z
i=1 4(n−i)−1

to the result of the preceding case and get
S(k) ≤ −2z2+4nz−4z+6n2+7n+2j(n+3)+4nz′+
2j − 2. With 2j = m− n we get S(k) ≤ 5mn+ n2 +
4nz − 2z2 − 2z + 4n+ 3m+ +2 log(m− n)− 2. �

2.2 One-Dimensional Agents Moving Simultane-
ously

In the preceding sections, we assumed that the agents
move alternatingly. How do the agents proceed, if
they are allowed to move simultaneously? The search
space remains the same. If the agents move alternat-
ingly, all points of equal distance to the start lie on a
diamond (i.e., a scaled copy of the L1-unit circle). In
this case, points of equal distance form a square (i.e.,
a scaled copy of the L∞-unit circle). We consider the
case of two curves of equal length.

Theorem 5 Even if the agents are allowed to move
simultaneously, there is an optimal strategy in which
the agents move alternatingly.

Proof. We show that an optimal strategy moves on
a rectangular spiral-like search pattern, as shown in
Figure 1(iii). Let the target be located at some un-
known finite distance, k, from the start point. If an
upper bound k′ is known to the agent, visiting points
in distance k′+ 1 (before every point of distance ≤ k′
is visited) does not make sense to the agent, because
these visits prolong the search path to the unvisited
points within distance k′. Thus, if the agent knows
no such upper bound, it has to cover each layer of
points of same distance i completely before it pro-
ceeds to the next layer with points of distance i + 1.
As connecting two successive layers costs one step,
the squared spiral is optimal. An axis-parallel move
in the search space corresponds to a move of a sin-
gle agent in the rendezvous space. Thus, the agents
move only alternatingly, even if they are allowed to
move simultaneously. �

191

27th European Workshop on Computational Geometry, 2011

(i) (ii)

Figure 4: The search space for R = 1 and r = 4 (i)
d = 3 (ii) d = 6, corner case d ≥ 2r − 2R, i.e. the
rendezvous area is connected.

2.3 Two-Dimensional Agents

Consider two mobile agents shaped as disks of radius
R, each moving on one of two intersecting circles of
radius r, r ≥ R, whose centers have distance d ≤ 2r.
We identify the position of the agent on the first circle
with the angle α between the circles center and the
line between the two circles’ centers. Analogously, we
express the position of the other agent as an angle β
and call the circles of the agents Cα and Cβ , respec-
tively. Again, the rendezvous search space is a torus.

Note that, in contrast to the preceding section,
modeling the search space as a grid is not sufficient
anymore, because now there is an infinite number of
rendezvous points, see Figure 4. We observe, how-
ever, that the set of rendezvous points for this scenario
consists of no more than two simply connected compo-
nents, one for each intersection point. For d ≥ 2r−2R
or d ≤ 2R, we have only one simply connected com-
ponent. In the rest of this section, we will assume
that none of these special cases occurs.

Searching for a point on a torus is quite involved;
thus, we want to find a convex region of a certain size.
This allows us either to inspect a finite set of points
on a grid or to move on an Archimedean spiral.

Lemma 6 In the search space, there is a square of
size at least 2R × 2R such that all points inside the
square are rendezvous points.

Proof. First, observe the line, M , through the cen-
ters of Cα and Cβ . For reasons of symmetry, in the
following we consider only one side of M . Construct
the line segment, L, of length 2R that is parallel to
M and whose end points lie on Cα and Cβ , see Fig-
ure 5. Let pα and pβ be the endpoints of L lying on
Cα and Cβ , respectively. Let qα and qβ be the inter-
section points of Cα and Cβ and the lines perpendic-
ular to L through pβ and pα, respectively. Note that
|pαqβ | = |qαpβ |. We consider two cases:

Case 1: |pαqβ | ≤ 2R. All pairs of points with α on
the arc from pα to qα and β on the arc from pβ to qβ
define a rendezvous point.

Case 2: |pαqβ | > 2R. We parallely move both pαqβ
and qαpα towards the intersection point, such that
|p′αq′β | = |q′αp′β | = 2R holds. Now, all pairs of points
with α on the arc from p′α to q′α and β on the arc from
p′β to q′β define a rendezvous point.

pβ pα

qβ

Cβ Cα

(i) (ii) q′α q
′
β

p′αp′β

Cβ Cα

L

L

qα

Figure 5: Construction of p/qα/β . The bold lines have
length 2R. (i) Case 1, (ii) Case 2.

In both cases, the arcs for α and β have length
greater than or equal to 2R. Thus, there is a 2R×2R
square of rendezvous points in the search space. �

2.4 Other Topologies

If one of the curves is open/infinite, the search space
is no longer a torus. In these cases, we search
the rendezvous point with strategies combining spi-
ral searches and doubling. In the case of finite, open
curves it may happen that one end of the search space
is fully explored, while other parts are unexplored. In
this case, we use a meandering search path. We leave
the details to the full version of this paper.

Acknowledgements
We thank Friedhelm Meyer auf der Heide, Bastian De-
gener, and Barbara Kempkes for helpful discussions.

References

[1] S. Alpern and S. Gal. The Theory of Search Games
and Rendezvous. Kluwer Academic Publications, 2003.

[2] E. J. Anderson and S. P. Fekete. Two-dimensional
rendezvous search. Oper. Res., 49:107–118, 2001.

[3] R. Baeza-Yates, J. Culberson, and G. Rawlins. Search-
ing in the plane. Inform. Comput., 106:234–252, 1993.

[4] J. Brunner, M. Mihalak, S. Suri, E. Vicari, and P. Wid-
mayer. Simple robots in polygonal environments: A
hierarchy. In Proc. Algosensors, 2008.

[5] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe,
and G. Trippen. Competitive online approximation
of the optimal search ratio. Siam J. Comput., pages
881–898, 2008.

[6] E. Kranakis, D. Krizanc, and E. Markou. Mobile agent
rendezvous in a synchronous torus. In LATIN, pages
653–664, 2006.

[7] J. M. O’Kane and S. M. LaValle. Dominance and
equivalence for sensor-based agents. In Proc. 22nd Na-
tional Conf. Artif. Intell., pages 1655–1658, 2007.

[8] S. Suri, E. Vicari, and P. Widmayer. Simple robots
with minimal sensing: From local visibility to global
geometry. Int. J. Robot. Res., 27:1055–1067, 2008.

192

