
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Improving shortest paths in the Delaunay triangulation ∗

Manuel Abellanas† Mercè Claverol‡ Gregorio Hernández† Ferran Hurtado§ Vera Sacristán§

Maria Saumell§ Rodrigo I. Silveira§

Abstract

We study a problem about shortest paths in Delau-
nay triangulations. Given two nodes s, t in the De-
launay triangulation of a point set P , we look for a
new point p that can be added, such that the short-
est path from s to t, in the Delaunay triangulation
of P ∪ {p}, improves as much as possible. We study
several properties of the problem, and give efficient al-
gorithms to find such point when the graph-distance
used is Euclidean and for the link-distance. Several
other variations of the problem are also discussed.

1 Introduction

There are many applications involving communica-
tion networks where the underlying physical network
topology is not known, too expensive to compute, or
there are reasons to prefer to use a logical network
instead. An example of an area where this occurs
is ad-hoc networks, where nodes can communicate
with each other when their distance is below some
threshold. Even though the routing is done locally,
to avoid broadcasting to all neighbors every time a
packet needs to be sent, some logical network topol-
ogy and routing algorithm must be used.
Similar situations arise in application-layer rout-

ing, where sometimes a logical network is used on top
of the actual, physical network (see for example [5]).
This logical network is assumed to have some overlay
topology, whose choice can have an important impact
on the overall performance of the network.
The Delaunay triangulation is often used to model

the overlay topology [3, 5] due to several advan-
tages: it provides locality, scales well, and in general
avoids high-degree vertices, which can create serious

∗This research was initiated during the 6th Iberian Work-
shop on Computational Geometry, held in Aveiro, Portugal.
M.A. and G.H. were partially supported by projects MTM2008-
05043 and HP2008-0060. M.C., F.H., V.S. and M.S. were par-
tially supported by projects MTM2009-07242 and Gen. Cat.
DGR 2009SGR1040. R.I.S. was supported by the Netherlands
Organisation for Scientific Research (NWO).

†Facultad de Informática, Universidad Politécnica de
Madrid, {mabellanas, gregorio}@fi.upm.es.

‡Departament de Matemàtica Aplicada IV, Universitat
Politècnica de Catalunya, merce@ma4.upc.edu

§Departament de Matemàtica Aplicada II, Universitat
Politècnica de Catalunya, {ferran.hurtado, vera.sacristan,

maria.saumell, rodrigo.silveira}@upc.edu

s
t

s
tp

G G′

Figure 1: Shortest path between s and t before (left)
and after (right) adding p, resulting in a shorter path.

bottlenecks. In addition, several widely-used local-
ized routing protocols guarantee to deliver the pack-
ets when the underlying network topology is the De-
launay triangulation [2]. Furthermore, there are lo-
calized routing protocols based on the Delaunay tri-
angulation where the total distance traveled by any
packet is never more than a small constant factor
times the network distance between source and des-
tination (e.g. [2]). Since the Delaunay triangulation
is known to be a spanner [4], in the case of geomet-
ric networks this guarantees that all packets travel at
most a constant times the minimum travel time.
In this paper we consider the problem of improving

a geometric network, with a Delaunay triangulation
topology, by augmenting it with additional nodes. In
particular, we aim at improving the shortest path on
the Delaunay network between two given nodes s and
t. Adding new nodes to a Delaunay network produces
changes in the network topology that can result in
equal, shorter, or longer shortest paths between s and
t (see Figure 1).
We restrict ourselves to the scenario where at most

one node can be added to the network, which can be
placed anywhere on the plane. The goal is to find a
location for the new node that improves the shortest
path between s and t as much as possible. We are not
aware of any previous work on this problem.

Notation The input to the problem is a set of n
points P = {p1, · · · , pn}, and two points s, t ∈ P . The
points represent the locations of the network nodes.
We will use G to denote the Delaunay graph of P :

G has the points in P as vertices, and an edge be-
tween two vertices (pi, pj) if and only if there is a
circle through pi, pj that does not contain any point

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

43

27th European Workshop on Computational Geometry, 2011

s
t

s
tp p

G G′

Figure 2: Adding a new point p to the Delaunay tri-
angulation.

from P in its interior. We assume the points in P are
in general position: no three points are collinear and
no four points are cocircular. Thus G represents the
Delaunay triangulation of P . Moreover, we also as-
sume that the edge (s, t) /∈ G, otherwise the distance
between s and t in G would be optimal. Note that we
use G to refer to both the graph and the triangulation.
The shortest path on G between s and t will be

denoted by SPG(s, t). The length of such path, de-
fined as the sum of the Euclidean lengths of its edges,
will be denoted by |SPG(s, t)|, although we will omit
G if possible. The straight line segment between two
points x and y will be denoted by xy, and its Eu-
clidean length by |xy|, whereas the Euclidean length
of an edge (x, y) will be denoted by |(x, y)|.
Finally, we will use G′

p to denote the Delaunay
graph of P ∪ {p}, for some p /∈ P (we will omit p
when clear from the context).

2 Properties and observations

We begin the paper by analyzing some geometric
properties of the problem.
When a new point p is inserted in P , some edges

of the Delaunay triangulation might disappear and
new edges, all incident to p, appear (see Figure 2).
The edges of G that are affected by the insertion of
p belong to Delaunay triangles whose circumcircles
contain p. In particular, all triangles in G whose cir-
cumcircle contains p get new edges in G′, connecting
their vertices to p. If p is outside the convex hull of
P, some additional edges might appear.
A first question that one may ask is whether it is

always possible to improve a shortest path by adding
one point to G. There are situations in which it is
easy to obtain some improvement:

Lemma 1 Let e1 and e2 be two consecutive edges
of SPG(s, t). Let C1 and C2 be two Delaunay circles
through the extremes of e1 and e2, respectively. If C1

and C2 are not tangent and C1 ∩ C2 is on the side
in which the edges form the smallest angle, then the
length of SPG(s, t) can always be reduced by inserting
one point.

e1 e2

s t
p

x y

Figure 3: Any point inserted in the shaded region,
like p, improves SP (s, t), shown in green.

Even though we omit the proof of the previous
lemma, the basic idea can be seen in Figure 3. If
we insert p in the shaded region, then (x, p) and (p, y)
will be Delaunay edges in G′, shortening the part of
SP (s, t) between x and y.
However, some shortest paths cannot be improved

at all by adding a single point:

Lemma 2 It is sometimes impossible to improve
SPG(s, t) by inserting only one point.

Proof. An example is shown in Figure 4. Notice that
e1, e2, C1, and C2 do not satisfy the hypothesis of
Lemma 1. Moreover, ∀x ∈ P \ {s, t}, |xs| + |xt| ≥
|e1| + |e2|, so a shorter path between s and t must
be of the form {s, p, t}. More precisely, p must be in-
serted so that |sp|+ |pt| < |e1|+ |e2|, (s, p) ∈ G′

p, and
(t, p) ∈ G′

p. It is easy to verify that these conditions
cannot be simultaneously satisfied. �

The example in Figure 4 can be extended to a path
with a linear number of vertices, and even to one
where SP (s, t) zigzags.
On the other hand, two points always suffice to im-

prove the shortest path between s and t.

Lemma 3 It is always possible to reduce the length
of SPG(s, t) by inserting two points, if SPG(s, t) is not
optimal.

Proof. Let e1 = (a, b), e2 = (b, c), C1 and C2 be two
consecutive edges of SP (s, t), and two Delaunay cir-

s
t

C1

C2

e1
e2

Figure 4: Example where SP (s, t) cannot be im-
proved by adding one point.

44

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

cles circumscribing them. If Lemma 1 cannot be ap-
plied, it is easy to see that we can place two points p1
and p2 close enough to b so that {a, p1, p2, c} is a path
in the new triangulation, shorter than {a, b, c}. �

3 Finding a point that gives the maximum im-
provement

In this section we present an algorithm that computes
a point p such that |SPG′

p
(s, t)| is minimum. The

correctness of the algorithm is based on the following
lemmas. First we prove that we only need to look at
O(I) possible candidate points, where I is the number
of pairs of Delaunay circles that intersect—I ∈ Θ(n2)
in the worst case. Then we show that the shortest
paths from s and t need to be computed only once.

Lemma 4 Let p be an optimal point, and let x, y be
the points in G such that SPG′

p
(s, t) includes (x, p)

and (p, y) as consecutive edges. Then p lies on the
segment xy, or on the intersection of a circumcircle
through x, and a circumcircle through y.

Proof. Suppose that p does not lie on the straight
line segment xy. Assume w.l.o.g. that xy is horizon-
tal, and p is above xy. Since p is optimal but moving
p down reduces |xp|+ |py|, any movement toward xy
must result in crossing a circle C that causes a flip re-
moving (x, p), (p, y) or some other edge in SPG′(s, t).
This can be because p either enters or leaves C.
If p enters a circle, an edge e connecting two neigh-

bors of p disappears, and is replaced by an edge e′ inci-
dent to p. Such a change cannot affect the combinato-
rial structure of the current shortest path SPG′(s, t).
Hence we are only interested in the event of leaving

a circle C. In this case an edge e, until now incident
to p, disappears, and is replaced by another edge e′

(see Figure 5). This can be a problem only if e =
(x, p) or e = (p, y). Assume that e = (x, p). Notice
that x lies on C. Even though moving p down would
make it cross C, the length of SPG′(s, t) could also
be reduced by moving p on the circle C toward xy.
If such a movement cannot be done without affecting
the combinatorial structure of SPG′(s, t), we conclude
that there is a second circle C ′ through p and y. �

Lemma 5 Let p be a point, and let x ∈ P such
that (x, p) ∈ G′

p. If SPG′
p
(s, p) includes (x, p),

then |SPG′
p
(s, p)| = |SPG(s, x)| + |xp|. Otherwise,

|SPG′
p
(s, p)| ≤ |SPG(s, x)|+ |xp|.

Algorithm The previous lemmas imply that to find
an optimal point p it is enough to analyze each pair
of Delaunay circles that intersect.
We first precompute the shortest path trees from

s and from t. Then we use an output-sensitive algo-
rithm to compute all pairs of circles that intersect.

C

x

e

C ′

y

p st(p)

Figure 5: Situation in proof of Lemma 4.

x
y

x y

p
p

C1

C2

Figure 6: Two optimal ways to connect x and y: by
a point on xy (left), and by a point on the boundary
of C1 ∩ C2 (right).

For each pair of intersecting circles (C1, C2), we pro-
ceed as follows. Each circle corresponds to a Delaunay
triangle from G. Let the two triangles be t1, t2. For
each pair of vertices x ∈ t1 and y ∈ t2, we first check if
xy intersects C1∩C2. If it does, we take p as any point
on (xy∩C1∩C2). Otherwise, we check the two points
where C1 and C2 intersect, and use the one that gives
the shortest path from x to y. See Figure 6.

If the length of SP (s, t) improves by using p, we
update this information. In the end we output the
point that gave the shortest path, if it improves over
SPG(s, t), or report that no point can improve it.

The running time of the algorithm is dominated
by the time needed to find all pairs of circles that
intersect. Therefore by using an algorithm like Bal-
aban’s [1] we obtain an O(n log n + I) running time,
with O(n) space.

Theorem 6 Given the Delaunay triangulation of n
points, and two vertices s and t, a point whose inser-
tion gives the maximum improvement in SP (s, t) can
be found in O(n logn+I) time, where I is the number
of pairs of Delaunay circles that intersect.

3.1 Related problems

Based on the previous lemmas, some other related
problems can also be solved more efficiently.

Finding an optimal point for every t If only s is
fixed, one may want to compute for each t ∈ P a

45

27th European Workshop on Computational Geometry, 2011

point pt whose insertion gives the optimal improve-
ment in SP (s, t). This can be done efficiently in two
steps. First we augment G by adding some edges as
follows: we add an edge (x, y) of weight w if there
exists a circumcircle through x intersecting a circum-
circle through y, such that the best point p in the
intersection satisfies |xp|+ |py| = w. These new edges
can be found in O(n log n + I) time, and the result-
ing graph H has O(n + I) edges and n vertices. In
the second step, we use Dijkstra’s algorithm imple-
mented with Fibonacci heaps to compute the single-
source shortest paths from s in H, modified to ensure
that no path uses more than one of the new edges.
This yields a running time of O(n log n+ I). This ap-
proach can also be used to compute, for each s and
each t, the point pst that gives the optimal improve-
ment for s and t, in O(n2 log n+ nI) time.

Other network graphs If instead of the Delaunay
graph a different proximity graph is used (e.g. Gabriel
or nearest neighbor graph), one can apply the general
approach of partitioning the plane into regions such
that inserting a point anywhere inside the region pro-
duces the same topological change to the structure.
Then the exact optimal location within a region can
be computed. Several proximity graphs related to the
Delaunay graph can use such technique, including the
minimum spanning tree (the corresponding subdivi-
sion has been studied in [6]).

4 Finding a point that gives the maximum im-
provement, using the link-distance

Next we consider the variant of the problem where
the metric used to measure distances on G is the link-
distance: the length of a path is defined by its number
of edges. This metric is also interesting in networking
applications, since it measures the number of hops.

We use dl(s, t) to denote the link-distance between
s and t. As before, we are interested in adding one
new point to G such that the link-distance between s
and t is minimized as much as possible.

Data structure We use a data structure D that al-
lows to answer the following type of query in O(log2 n)
time: given a circle C, find a Delaunay circle C∗

that (i) intersects C, and (ii) has minimum link-
distance to t. The link-distance from a circumcircle
C—corresponding to a triangle △(a, b, c)—to t is de-
fined as min{dl(a, t), dl(b, t), dl(c, t)}. The data struc-
ture consists of a balanced binary tree where each
node represents the union of a subset of the circum-
circles. The unions are represented by additively-
weighted Voronoi diagrams of the circle centers. It
takes O(n log n) space and can be built in O(n log2 n)
time. We omit the details due to the space limit.

Algorithm The algorithm proceeds as follows. First
the shortest paths from s and t to each other node
are precomputed. Then we go over all points in P .
For each possible point x we query the data structure
D with each circumcircle that goes through x. We
simply keep track of the lowest value returned by each
query, for each point. After doing this for all points
in P , we return a point in the intersection associated
with the circles that gave the minimum distance. The
correctness of the algorithm follows from the previous
lemmas, which also hold for the link-distance. The
total running time of the algorithm is O(n log2 n).

Theorem 7 Given the Delaunay triangulation of n
points, and two vertices s and t, a point whose in-
sertion gives the maximum improvement in SP (s, t),
under the link-distance, can be found in O(n log2 n)
time.

5 Discussion

We studied the problem of adding a point to a De-
launay triangulation, such that it improves a short-
est path as much as possible. As already mentioned,
the methods and observations used can be adapted
to solve other related problems, like when other prox-
imity graphs are used. It is also possible to solve
efficiently the somewhat dual problem of finding a
node whose removal gives the best improvement to
the shortest path between s and t. We omit details
due to space constraints.
Several improvements to our algorithms are pos-

sible. A particularly intriguing question is whether
the decision problem (Is there a point that improves
SP (s, t)?) can be solved faster than the optimization
version.

References

[1] I. J. Balaban. An optimal algorithm for finding seg-
ments intersections. In Proc. SoCG’95, pages 211–219,
1995.

[2] P. Bose and P. Morin. Online routing in triangulations.
SIAM J. Comput., 33(4):937–951, 2004.

[3] E. Buyukkaya and M. Abdallah. Efficient triangula-
tion for P2P networked virtual environments. In Proc.
NetGames’08, pages 34–39, 2008.

[4] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. De-
launay graphs are almost as good as complete graphs.
Discrete Comput. Geom., 5:399–407, 1990.

[5] J. Liebeherr, M. Nahas, and W. Si. Application-
layer multicasting with Delaunay triangulation over-
lays. IEEE J. Sel. Areas Comm., 20:1472 – 1488, 2002.

[6] C. L. Monma and S. Suri. Transitions in geometric
minimum spanning trees. Discrete Comput. Geom.,
8:265–293, 1992.

46

